Merge branch 'master' of raven.am28.uni-tuebingen.de:scientificComputing
This commit is contained in:
commit
0fdcf2f82e
@ -5,7 +5,7 @@
|
||||
Each project has three elements that are graded: (i) the code,
|
||||
(ii) the slides/figures, and (iii) the presentation.
|
||||
|
||||
\vspace{.5cm}
|
||||
\vspace{1ex}
|
||||
|
||||
The {\bf code} and the {\bf presentation} should be uploaded to
|
||||
ILIAS at latest on Thursday, November 6th, 12:00h.
|
||||
@ -13,7 +13,7 @@
|
||||
your presentation as a pdf file. Bundle everything into a
|
||||
{\em single} zip-file.
|
||||
|
||||
\vspace{.5cm}
|
||||
\vspace{1ex}
|
||||
|
||||
The {\bf code} should be exectuable without any further
|
||||
adjustments from us. This means that you need to include all
|
||||
@ -25,11 +25,11 @@
|
||||
and comprehensible by third persons (use proper and consistent
|
||||
variable names).
|
||||
|
||||
\vspace{.5cm} \textbf{Please write your name and matriculation
|
||||
\vspace{1ex} \textbf{Please write your name and matriculation
|
||||
number as a comment at the top of a script called \texttt{main.m}!}
|
||||
The \texttt{main.m} script then should call all your scripts.
|
||||
|
||||
\vspace{.5cm}
|
||||
\vspace{1ex}
|
||||
|
||||
The {\bf presentation} should be {\em at most} 10min long and be
|
||||
held in English. In the presentation you should (i) briefly
|
||||
|
0
projects/project_adaptation_fit/adaptation_fit.tex
Executable file → Normal file
0
projects/project_adaptation_fit/adaptation_fit.tex
Executable file → Normal file
0
projects/project_eod/eod.tex
Executable file → Normal file
0
projects/project_eod/eod.tex
Executable file → Normal file
0
projects/project_eyetracker/eyetracker.tex
Executable file → Normal file
0
projects/project_eyetracker/eyetracker.tex
Executable file → Normal file
@ -7,4 +7,4 @@ clean:
|
||||
rm -f `basename *.tex .tex`.pdf
|
||||
|
||||
zip: latex
|
||||
zip `basename *.tex .tex`.zip *.pdf *.dat *.mat
|
||||
zip `basename *.tex .tex`.zip *.pdf *.dat *.mat *.m
|
133
projects/project_fano_slope/fano_slope.tex
Normal file
133
projects/project_fano_slope/fano_slope.tex
Normal file
@ -0,0 +1,133 @@
|
||||
\documentclass[addpoints,10pt]{exam}
|
||||
\usepackage{url}
|
||||
\usepackage{color}
|
||||
\usepackage{hyperref}
|
||||
|
||||
\pagestyle{headandfoot}
|
||||
\runningheadrule
|
||||
\firstpageheadrule
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
|
||||
%\printanswers
|
||||
%\shadedsolutions
|
||||
|
||||
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\usepackage{listings}
|
||||
\lstset{
|
||||
basicstyle=\ttfamily,
|
||||
numbers=left,
|
||||
showstringspaces=false,
|
||||
language=Matlab,
|
||||
breaklines=true,
|
||||
breakautoindent=true,
|
||||
columns=flexible,
|
||||
frame=single,
|
||||
% captionpos=t,
|
||||
xleftmargin=2em,
|
||||
xrightmargin=1em,
|
||||
% aboveskip=10pt,
|
||||
%title=\lstname,
|
||||
% title={\protect\filename@parse{\lstname}\protect\filename@base.\protect\filename@ext}
|
||||
}
|
||||
|
||||
|
||||
\begin{document}
|
||||
%%%%%%%%%%%%%%%%%%%%% Submission instructions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\sffamily
|
||||
% \begin{flushright}
|
||||
% \gradetable[h][questions]
|
||||
% \end{flushright}
|
||||
|
||||
\begin{center}
|
||||
\input{../disclaimer.tex}
|
||||
\end{center}
|
||||
|
||||
%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\begin{questions}
|
||||
\question You are recording the activity of a neuron in response to
|
||||
two different stimuli $I_1$ and $I_2$ (think of them, for example,
|
||||
of two sound waves with different intensities $I_1$ and
|
||||
$I_2$). Within an observation time of duration $W$ the neuron
|
||||
responds stochastically with $n_i$ spikes.
|
||||
|
||||
How well can an upstream neuron discriminate the two stimuli based
|
||||
on the spike counts $n_i$? How does this depend on the slope of the
|
||||
tuning curve of the neural responses? How is this related to the
|
||||
fano factor (the ratio between the variance and the mean of the
|
||||
spike counts)?
|
||||
|
||||
\begin{parts}
|
||||
\part The neuron is implemented in the file \texttt{lifboltzmanspikes.m}.
|
||||
Call it with the following parameters:
|
||||
\begin{lstlisting}
|
||||
trials = 10;
|
||||
tmax = 50.0;
|
||||
Dnoise = 1.0;
|
||||
imax = 25.0;
|
||||
ithresh = 10.0;
|
||||
slope=0.2;
|
||||
input = 10.0;
|
||||
|
||||
spikes = lifboltzmanspikes( trials, input, tmax, Dnoise, imax, ithresh, slope );
|
||||
\end{lstlisting}
|
||||
The returned \texttt{spikes} is a cell array with \texttt{trials} elements, each being a vector
|
||||
of spike times (in seconds) computed for a duration of \texttt{tmax} seconds.
|
||||
The input is set via the \texttt{input} variable.
|
||||
|
||||
For the two inputs use $I_1=10$ and $I_2=I_1 + 1$.
|
||||
|
||||
First, show two raster plots for the responses to the two differrent stimuli.
|
||||
|
||||
\part Measure the tuning curve of the neuron with respect to the input. That is,
|
||||
compute the mean firing rate as a function of the input
|
||||
strength. Find an appropriate range of input values. Do this for
|
||||
different values of the \texttt{slope} parameter (values between
|
||||
0.1 and 2.0).
|
||||
|
||||
\part Generate histograms of the spike counts within $W=200$\,ms of the
|
||||
responses to the two differrent stimuli $I_1$ and $I_2$. How do they depend on the slope
|
||||
of the tuning curve of the neuron?
|
||||
|
||||
\part Think about a measure based on the spike count histograms that quantifies how well
|
||||
the two stimuli can be distinguished based on the spike
|
||||
counts. Plot the dependence of this measure as a function of the observation time $W$.
|
||||
|
||||
For which slopes can the two stimuli perfectly discriminated?
|
||||
|
||||
Hint: A possible readout is to set a threshold $n_{thresh}$ for
|
||||
the observed spike count. Any response smaller than the threshold
|
||||
assumes that the stimulus was $I_1$, any response larger than the
|
||||
threshold assumes that the stimulus was $I_2$. What is the
|
||||
probability that the stimulus was indeed $I_1$ or $I_2$,
|
||||
respectively? Find the threshold $n_{thresh}$ that
|
||||
results in the best discrimination performance.
|
||||
|
||||
\part Also plot the Fano factor as a function of the slope. How is it related to the discriminability?
|
||||
|
||||
\uplevel{If you still have time you can continue with the following questions:}
|
||||
|
||||
\part You may change the difference between the two stimuli $I_1$ and $I_2$
|
||||
as well as the intrinsic noise of the neuron via \texttt{Dnoise}
|
||||
(change it in factors of ten, higher values will make the
|
||||
responses more variable) and repeat your analysis.
|
||||
|
||||
\part For $I_1=10$ the mean firing is about $80$\,Hz. When changing the slope of the tuning curve
|
||||
this firing rate may also change. Improve your analysis by finding for each slope the input
|
||||
that results exactly in a firing rate of $80$\,Hz. Set $I_2$ on unit above $I_1$.
|
||||
|
||||
\part How does the dependence of the stimulus discrimination performance on the slope change
|
||||
when you set both $I_1$ and $I_2$ such that they evoke $80$ and
|
||||
$100$\,Hz firing rate, respectively?
|
||||
|
||||
\end{parts}
|
||||
|
||||
\end{questions}
|
||||
|
||||
\end{document}
|
51
projects/project_fano_slope/lifboltzmanspikes.m
Normal file
51
projects/project_fano_slope/lifboltzmanspikes.m
Normal file
@ -0,0 +1,51 @@
|
||||
function spikes = lifboltzmanspikes( trials, input, tmaxdt, D, imax, ithresh, slope )
|
||||
% Generate spike times of a leaky integrate-and-fire neuron
|
||||
% trials: the number of trials to be generated
|
||||
% input: the stimulus either as a single value or as a vector
|
||||
% tmaxdt: in case of a single value stimulus the duration of a trial
|
||||
% in case of a vector as a stimulus the time step
|
||||
% D: the strength of additive white noise
|
||||
% imax: maximum output of boltzman
|
||||
% ithresh: threshold of boltzman input
|
||||
% slope: slope factor of boltzman input
|
||||
|
||||
tau = 0.01;
|
||||
if nargin < 4
|
||||
D = 1e0;
|
||||
end
|
||||
if nargin < 5
|
||||
imax = 20;
|
||||
end
|
||||
if nargin < 6
|
||||
ithresh = 10;
|
||||
end
|
||||
if nargin < 7
|
||||
slope = 1;
|
||||
end
|
||||
vreset = 0.0;
|
||||
vthresh = 10.0;
|
||||
dt = 1e-4;
|
||||
|
||||
if length( input ) == 1
|
||||
input = input * ones( ceil( tmaxdt/dt ), 1 );
|
||||
else
|
||||
dt = tmaxdt;
|
||||
end
|
||||
inb = imax./(1.0+exp(-slope.*(input - ithresh)));
|
||||
spikes = cell( trials, 1 );
|
||||
for k=1:trials
|
||||
times = [];
|
||||
j = 1;
|
||||
v = vreset;
|
||||
noise = sqrt(2.0*D)*randn( length( input ), 1 )/sqrt(dt);
|
||||
for i=1:length( noise )
|
||||
v = v + ( - v + noise(i) + inb(i))*dt/tau;
|
||||
if v >= vthresh
|
||||
v = vreset;
|
||||
times(j) = i*dt;
|
||||
j = j + 1;
|
||||
end
|
||||
end
|
||||
spikes{k} = times;
|
||||
end
|
||||
end
|
10
projects/project_fano_time/Makefile
Normal file
10
projects/project_fano_time/Makefile
Normal file
@ -0,0 +1,10 @@
|
||||
latex:
|
||||
pdflatex *.tex > /dev/null
|
||||
pdflatex *.tex > /dev/null
|
||||
|
||||
clean:
|
||||
rm -rf *.log *.aux *.zip *.out auto
|
||||
rm -f `basename *.tex .tex`.pdf
|
||||
|
||||
zip: latex
|
||||
zip `basename *.tex .tex`.zip *.pdf *.dat *.mat *.m
|
119
projects/project_fano_time/fano_time.tex
Normal file
119
projects/project_fano_time/fano_time.tex
Normal file
@ -0,0 +1,119 @@
|
||||
\documentclass[addpoints,10pt]{exam}
|
||||
\usepackage{url}
|
||||
\usepackage{color}
|
||||
\usepackage{hyperref}
|
||||
|
||||
\pagestyle{headandfoot}
|
||||
\runningheadrule
|
||||
\firstpageheadrule
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
|
||||
%\printanswers
|
||||
%\shadedsolutions
|
||||
|
||||
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\usepackage{listings}
|
||||
\lstset{
|
||||
basicstyle=\ttfamily,
|
||||
numbers=left,
|
||||
showstringspaces=false,
|
||||
language=Matlab,
|
||||
breaklines=true,
|
||||
breakautoindent=true,
|
||||
columns=flexible,
|
||||
frame=single,
|
||||
% captionpos=t,
|
||||
xleftmargin=2em,
|
||||
xrightmargin=1em,
|
||||
% aboveskip=10pt,
|
||||
%title=\lstname,
|
||||
% title={\protect\filename@parse{\lstname}\protect\filename@base.\protect\filename@ext}
|
||||
}
|
||||
|
||||
|
||||
\begin{document}
|
||||
%%%%%%%%%%%%%%%%%%%%% Submission instructions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\sffamily
|
||||
% \begin{flushright}
|
||||
% \gradetable[h][questions]
|
||||
% \end{flushright}
|
||||
|
||||
\begin{center}
|
||||
\input{../disclaimer.tex}
|
||||
\end{center}
|
||||
|
||||
%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\begin{questions}
|
||||
\question You are recording the activity of a neuron in response to
|
||||
two different stimuli $I_1$ and $I_2$ (think of them, for example,
|
||||
of two sound waves with different intensities $I_1$ and
|
||||
$I_2$). Within an observation time of duration $W$ the neuron
|
||||
responds stochastically with $n_i$ spikes.
|
||||
|
||||
How well can an upstream neuron discriminate the two
|
||||
stimuli based on the spike counts $n_i$? How does this depend on the
|
||||
duration $W$ of the observation time? How is this related to the fano factor
|
||||
(the ratio between the variance and the mean of the spike counts)?
|
||||
|
||||
\begin{parts}
|
||||
\part The neuron is implemented in the file \texttt{lifadaptspikes.m}.
|
||||
Call it with the following parameters:
|
||||
\begin{lstlisting}
|
||||
trials = 10;
|
||||
tmax = 50.0;
|
||||
input = 65.0;
|
||||
Dnoise = 0.1;
|
||||
adapttau = 0.2;
|
||||
adaptincr = 0.5;
|
||||
|
||||
spikes = lifadaptspikes( trials, input, tmax, Dnoise, adapttau, adaptincr );
|
||||
\end{lstlisting}
|
||||
The returned \texttt{spikes} is a cell array with \texttt{trials} elements, each being a vector
|
||||
of spike times (in seconds) computed for a duration of \texttt{tmax} seconds.
|
||||
|
||||
For the two inputs $I_1$ and $I_2$ use
|
||||
\begin{lstlisting}
|
||||
input = 65.0; % I_1
|
||||
input = 75.0; % I_2
|
||||
\end{lstlisting}
|
||||
|
||||
Show two raster plots for the responses to the two differrent stimuli.
|
||||
|
||||
\part Generate histograms of the spike counts within $W$ of the
|
||||
responses to the two differrent stimuli. How do they depend on the observation time $W$
|
||||
(use values between 1\,ms and 1\,s)?
|
||||
|
||||
\part Think about a measure based on the spike count histograms that quantifies how well
|
||||
the two stimuli can be distinguished based on the spike
|
||||
counts. Plot the dependence of this measure as a function of the observation time $W$.
|
||||
|
||||
For which observation times can the two stimuli perfectly discriminated?
|
||||
|
||||
Hint: A possible readout is to set a threshold $n_{thresh}$ for
|
||||
the observed spike count. Any response smaller than the threshold
|
||||
assumes that the stimulus was $I_1$, any response larger than the
|
||||
threshold assumes that the stimulus was $I_2$. What is the
|
||||
probability that the stimulus was indeed $I_1$ or $I_2$,
|
||||
respectively? For a given $W$ find the threshold $n_{thresh}$ that
|
||||
results in the best discrimination performance.
|
||||
|
||||
\part Also plot the Fano factor as a function of $W$. How is it related to the discriminability?
|
||||
|
||||
\uplevel{If you still have time you can continue with the following question:}
|
||||
|
||||
\part You may change the two stimuli $I_1$ and $I_2$ and the intrinsic noise of the neuron via
|
||||
\texttt{Dnoise} (change it in factors of ten, higher values will make the responses more variable)
|
||||
and repeat your analysis.
|
||||
|
||||
\end{parts}
|
||||
|
||||
\end{questions}
|
||||
|
||||
\end{document}
|
53
projects/project_fano_time/lifadaptspikes.m
Normal file
53
projects/project_fano_time/lifadaptspikes.m
Normal file
@ -0,0 +1,53 @@
|
||||
function spikes = lifadaptspikes( trials, input, tmaxdt, D, tauadapt, adaptincr )
|
||||
% Generate spike times of a leaky integrate-and-fire neuron
|
||||
% with an adaptation current
|
||||
% trials: the number of trials to be generated
|
||||
% input: the stimulus either as a single value or as a vector
|
||||
% tmaxdt: in case of a single value stimulus the duration of a trial
|
||||
% in case of a vector as a stimulus the time step
|
||||
% D: the strength of additive white noise
|
||||
% tauadapt: adaptation time constant
|
||||
% adaptincr: adaptation strength
|
||||
|
||||
tau = 0.01;
|
||||
if nargin < 4
|
||||
D = 1e0;
|
||||
end
|
||||
if nargin < 5
|
||||
tauadapt = 0.1;
|
||||
end
|
||||
if nargin < 6
|
||||
adaptincr = 1.0;
|
||||
end
|
||||
vreset = 0.0;
|
||||
vthresh = 10.0;
|
||||
dt = 1e-4;
|
||||
|
||||
if max( size( input ) ) == 1
|
||||
input = input * ones( ceil( tmaxdt/dt ), 1 );
|
||||
else
|
||||
dt = tmaxdt;
|
||||
end
|
||||
spikes = cell( trials, 1 );
|
||||
for k=1:trials
|
||||
times = [];
|
||||
j = 1;
|
||||
v = vreset;
|
||||
a = 0.0;
|
||||
noise = sqrt(2.0*D)*randn( length( input ), 1 )/sqrt(dt);
|
||||
for i=1:length( noise )
|
||||
v = v + ( - v - a + noise(i) + input(i))*dt/tau;
|
||||
a = a + ( - a )*dt/tauadapt;
|
||||
if v >= vthresh
|
||||
v = vreset;
|
||||
a = a + adaptincr/tauadapt;
|
||||
spiketime = i*dt;
|
||||
if spiketime > 4.0*tauadapt
|
||||
times(j) = spiketime - 4.0*tauadapt;
|
||||
j = j + 1;
|
||||
end
|
||||
end
|
||||
end
|
||||
spikes{k} = times;
|
||||
end
|
||||
end
|
10
projects/project_isicorrelations/Makefile
Normal file
10
projects/project_isicorrelations/Makefile
Normal file
@ -0,0 +1,10 @@
|
||||
latex:
|
||||
pdflatex *.tex > /dev/null
|
||||
pdflatex *.tex > /dev/null
|
||||
|
||||
clean:
|
||||
rm -rf *.log *.aux *.zip *.out auto
|
||||
rm -f `basename *.tex .tex`.pdf
|
||||
|
||||
zip: latex
|
||||
zip `basename *.tex .tex`.zip *.pdf *.dat *.mat *.m
|
109
projects/project_isicorrelations/isicorrelations.tex
Normal file
109
projects/project_isicorrelations/isicorrelations.tex
Normal file
@ -0,0 +1,109 @@
|
||||
\documentclass[addpoints,10pt]{exam}
|
||||
\usepackage{url}
|
||||
\usepackage{color}
|
||||
\usepackage{hyperref}
|
||||
|
||||
\pagestyle{headandfoot}
|
||||
\runningheadrule
|
||||
\firstpageheadrule
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
|
||||
%\printanswers
|
||||
%\shadedsolutions
|
||||
|
||||
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\usepackage{listings}
|
||||
\lstset{
|
||||
basicstyle=\ttfamily,
|
||||
numbers=left,
|
||||
showstringspaces=false,
|
||||
language=Matlab,
|
||||
breaklines=true,
|
||||
breakautoindent=true,
|
||||
columns=flexible,
|
||||
frame=single,
|
||||
% captionpos=t,
|
||||
xleftmargin=2em,
|
||||
xrightmargin=1em,
|
||||
% aboveskip=10pt,
|
||||
%title=\lstname,
|
||||
% title={\protect\filename@parse{\lstname}\protect\filename@base.\protect\filename@ext}
|
||||
}
|
||||
|
||||
|
||||
\begin{document}
|
||||
%%%%%%%%%%%%%%%%%%%%% Submission instructions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\sffamily
|
||||
% \begin{flushright}
|
||||
% \gradetable[h][questions]
|
||||
% \end{flushright}
|
||||
|
||||
\begin{center}
|
||||
\input{../disclaimer.tex}
|
||||
\end{center}
|
||||
|
||||
%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\begin{questions}
|
||||
\question You are recording the activity of a neuron in response to
|
||||
constant stimuli of intensity $I$ (think of that, for example,
|
||||
of sound waves with intensities $I$). The neuron has an adaptatation
|
||||
current that adapts the firing rate with a slow time constant down.
|
||||
|
||||
Explore the dependence of interspike interval correlations on the firing rate,
|
||||
adaptation time constant and noise level.
|
||||
|
||||
\begin{parts}
|
||||
\part The neuron is a neuron with an adaptation current.
|
||||
It is implemented in the file \texttt{lifadaptspikes.m}. Call it
|
||||
with the following parameters:
|
||||
\begin{lstlisting}
|
||||
trials = 10;
|
||||
tmax = 50.0;
|
||||
input = 10.0; % the input I
|
||||
Dnoise = 1e-2; % noise strength
|
||||
adapttau = 0.1; % adaptation time constant in seconds
|
||||
adaptincr = 0.5; % adaptation strength
|
||||
|
||||
spikes = lifadaptspikes( trials, input, tmax, Dnoise, adapttau, adaptincr );
|
||||
\end{lstlisting}
|
||||
The returned \texttt{spikes} is a cell array with \texttt{trials} elements, each being a vector
|
||||
of spike times (in seconds) computed for a duration of \texttt{tmax} seconds.
|
||||
The input is set via the \texttt{input} variable, the noise strength via \texttt{Dnoise},
|
||||
and the adaptation time constant via \texttt{adapttau}.
|
||||
|
||||
\part Measure the intensity-response curve of the neuron, that is the mean firing rate
|
||||
as a function of the input for a range of inputs from 0 to 120.
|
||||
|
||||
\part Compute the correlations between each interspike interval $T_i$ and the next one $T_{i+1}$
|
||||
(serial interspike interval correlation at lag 1). Plot this correlation as a function of the
|
||||
firing rate by varying the input as in (a).
|
||||
|
||||
\part How does this dependence change for different values of the adaptation
|
||||
time constant \texttt{adapttau}? Use values between 10\,ms and
|
||||
1\,s for \texttt{adapttau}.
|
||||
|
||||
\part Determine the firing rate at which the minimum interspike interval correlation
|
||||
occurs. How does the minimum correlation and this firing rate
|
||||
depend on the adaptation time constant \texttt{adapttau}?
|
||||
|
||||
\part How do the results change if the level of the intrinsic noise \texttt{Dnoise} is modified?
|
||||
Use values of 1e-4, 1e-3, 1e-2, 1e-1, and 1 for \texttt{Dnoise}.
|
||||
|
||||
|
||||
\uplevel{If you still have time you can continue with the following question:}
|
||||
|
||||
\part How do the interspike interval distributions look like for the different noise levels
|
||||
at some example values for the input and the adaptation time constant?
|
||||
|
||||
\end{parts}
|
||||
|
||||
\end{questions}
|
||||
|
||||
\end{document}
|
53
projects/project_isicorrelations/lifadaptspikes.m
Normal file
53
projects/project_isicorrelations/lifadaptspikes.m
Normal file
@ -0,0 +1,53 @@
|
||||
function spikes = lifadaptspikes( trials, input, tmaxdt, D, tauadapt, adaptincr )
|
||||
% Generate spike times of a leaky integrate-and-fire neuron
|
||||
% with an adaptation current
|
||||
% trials: the number of trials to be generated
|
||||
% input: the stimulus either as a single value or as a vector
|
||||
% tmaxdt: in case of a single value stimulus the duration of a trial
|
||||
% in case of a vector as a stimulus the time step
|
||||
% D: the strength of additive white noise
|
||||
% tauadapt: adaptation time constant
|
||||
% adaptincr: adaptation strength
|
||||
|
||||
tau = 0.01;
|
||||
if nargin < 4
|
||||
D = 1e0;
|
||||
end
|
||||
if nargin < 5
|
||||
tauadapt = 0.1;
|
||||
end
|
||||
if nargin < 6
|
||||
adaptincr = 1.0;
|
||||
end
|
||||
vreset = 0.0;
|
||||
vthresh = 10.0;
|
||||
dt = 1e-4;
|
||||
|
||||
if max( size( input ) ) == 1
|
||||
input = input * ones( ceil( tmaxdt/dt ), 1 );
|
||||
else
|
||||
dt = tmaxdt;
|
||||
end
|
||||
spikes = cell( trials, 1 );
|
||||
for k=1:trials
|
||||
times = [];
|
||||
j = 1;
|
||||
v = vreset;
|
||||
a = 0.0;
|
||||
noise = sqrt(2.0*D)*randn( length( input ), 1 )/sqrt(dt);
|
||||
for i=1:length( noise )
|
||||
v = v + ( - v - a + noise(i) + input(i))*dt/tau;
|
||||
a = a + ( - a )*dt/tauadapt;
|
||||
if v >= vthresh
|
||||
v = vreset;
|
||||
a = a + adaptincr/tauadapt;
|
||||
spiketime = i*dt;
|
||||
if spiketime > 4.0*tauadapt
|
||||
times(j) = spiketime - 4.0*tauadapt;
|
||||
j = j + 1;
|
||||
end
|
||||
end
|
||||
end
|
||||
spikes{k} = times;
|
||||
end
|
||||
end
|
10
projects/project_isipdffit/Makefile
Normal file
10
projects/project_isipdffit/Makefile
Normal file
@ -0,0 +1,10 @@
|
||||
latex:
|
||||
pdflatex *.tex > /dev/null
|
||||
pdflatex *.tex > /dev/null
|
||||
|
||||
clean:
|
||||
rm -rf *.log *.aux *.zip *.out auto
|
||||
rm -f `basename *.tex .tex`.pdf
|
||||
|
||||
zip: latex
|
||||
zip `basename *.tex .tex`.zip *.pdf *.dat *.mat *.m
|
140
projects/project_isipdffit/isipdffit.tex
Normal file
140
projects/project_isipdffit/isipdffit.tex
Normal file
@ -0,0 +1,140 @@
|
||||
\documentclass[addpoints,10pt]{exam}
|
||||
\usepackage{url}
|
||||
\usepackage{color}
|
||||
\usepackage{hyperref}
|
||||
|
||||
\pagestyle{headandfoot}
|
||||
\runningheadrule
|
||||
\firstpageheadrule
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
|
||||
%\printanswers
|
||||
%\shadedsolutions
|
||||
|
||||
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\usepackage{listings}
|
||||
\lstset{
|
||||
basicstyle=\ttfamily,
|
||||
numbers=left,
|
||||
showstringspaces=false,
|
||||
language=Matlab,
|
||||
breaklines=true,
|
||||
breakautoindent=true,
|
||||
columns=flexible,
|
||||
frame=single,
|
||||
% captionpos=t,
|
||||
xleftmargin=2em,
|
||||
xrightmargin=1em,
|
||||
% aboveskip=10pt,
|
||||
%title=\lstname,
|
||||
% title={\protect\filename@parse{\lstname}\protect\filename@base.\protect\filename@ext}
|
||||
}
|
||||
|
||||
|
||||
\begin{document}
|
||||
%%%%%%%%%%%%%%%%%%%%% Submission instructions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\sffamily
|
||||
% \begin{flushright}
|
||||
% \gradetable[h][questions]
|
||||
% \end{flushright}
|
||||
|
||||
\begin{center}
|
||||
\input{../disclaimer.tex}
|
||||
\end{center}
|
||||
|
||||
%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\begin{questions}
|
||||
\question You are recording the activity of two neurons in response to
|
||||
a constant stimulus $I$ (think of it, for example,
|
||||
of a sound wave with intensity $I$).
|
||||
|
||||
For different inputs $I$ the interspike interval ($T$) distribution looks
|
||||
quite different. You want to compare these distributions to
|
||||
the following three standard distributions.
|
||||
|
||||
The first is the exponential distribution of a Poisson spike train:
|
||||
\begin{equation}
|
||||
\label{exppdf}
|
||||
p_{exp}(T) = \lambda e^{-\lambda T}
|
||||
\end{equation}
|
||||
where $\lambda$ is the mean firing rate of the response.
|
||||
|
||||
The second distribution is the inverse Gaussian:
|
||||
\begin{equation}
|
||||
\label{invgauss}
|
||||
p_\mathrm{ig}(T) = \frac{1}{\sqrt{4 \pi D T^{3}}} \exp \left[ - \frac{(T - \mu)^{2} }{4 D T \mu^{2}} \right]
|
||||
\end{equation}
|
||||
where $\mu$ is the mean interspike interval and
|
||||
$D=\textrm{var}(T)/(2\mu^3)$ is the so called diffusion coefficient.
|
||||
|
||||
The third one was derived for neurons driven with colored noise:
|
||||
\begin{equation}\label{pcn}
|
||||
p_\mathrm{cn}(T)=\frac{1}{2\tau\sqrt{4\pi\epsilon\gamma_1^3}}\exp\left[-\frac{(T-\mu)^2}{4\epsilon\tau^2\gamma_1}\right]\left\{\frac{[(\mu-T)\gamma_2+2\gamma_1\tau]^2}{2\gamma_1\tau^2}-\epsilon(\gamma_2^2-2\gamma_1e^{-T/\tau})\right\}
|
||||
\end{equation}
|
||||
with $\gamma_1(T)=T/\tau+e^{-T/\tau}-1$, $\gamma_2(T)=1-e^{-T/\tau}$
|
||||
and correlation time of the colored noise $\tau$.
|
||||
Eq.~(\ref{pcn}) thus has the three parameter $\mu$, $\epsilon>0$, and $\tau$.
|
||||
|
||||
The squared coefficient of variation (standard deviation of the
|
||||
interspike intervals divided by their mean) of the density
|
||||
eq.~(\ref{pcn}) is given by
|
||||
\begin{equation}
|
||||
\label{cvpcn}
|
||||
C_V^2=\frac{2}{\delta}\left[\epsilon\left(1-\frac{1-e^{-\delta}}{\delta}\right)+\epsilon^2\left(e^{-\delta}+\frac{(1-e^{-\delta})(1-2e^{-\delta})}{\delta}\right)\right]
|
||||
\end{equation}
|
||||
with $\delta=\mu/\tau$.
|
||||
|
||||
\begin{parts}
|
||||
\part The two neurons are implemented in the files \texttt{pifouspikes.m}
|
||||
and \texttt{lifouspikes.m}.
|
||||
Call them with the following parameters:
|
||||
\begin{lstlisting}
|
||||
trials = 10;
|
||||
tmax = 50.0;
|
||||
input = 10.0; % the input I
|
||||
Dnoise = 1.0; % noise strength
|
||||
outau = 1.0; % correlation time of the noise in seconds
|
||||
|
||||
spikes = pifouspikes( trials, input, tmax, Dnoise, outau );
|
||||
\end{lstlisting}
|
||||
The returned \texttt{spikes} is a cell array with \texttt{trials} elements, each being a vector
|
||||
of spike times (in seconds) computed for a duration of \texttt{tmax} seconds.
|
||||
The input is set via the \texttt{input} variable.
|
||||
|
||||
\part Find for both model neurons the inputs $I_i$ required to make the fire with a mean rate
|
||||
of 10, 20, 50, and 100\,Hz.
|
||||
|
||||
\part Compute interspike interval distributions of the two model neurons for these inputs $I_i$.
|
||||
|
||||
\part Compare the interspike interval distributions with the exponential
|
||||
distribution eq.~(\ref{exppdf}) and the inverse Gaussian
|
||||
eq.~(\ref{invgauss}) by measuring their parameters from the
|
||||
interspike intervals. How well do theu describe the real
|
||||
distributions for the different conditions?
|
||||
|
||||
\part Also fit eq.~(\ref{pcn}) to the data. Here you need to apply a non-linear fit algorithm.
|
||||
|
||||
How well does this function describe the data?
|
||||
|
||||
Compare the fitted value for $\tau$ with the one used for the model (\texttt{outau}).
|
||||
|
||||
|
||||
\uplevel{If you still have time you can continue with the following question:}
|
||||
|
||||
\part Compare the measured coefficient of variation with eq.~(\ref{cvpcn}).
|
||||
|
||||
\part Repeat your analysis for different values of the intrinsic noise strengh of the neurons
|
||||
\texttt{Dnoise}. Increase or decrease it in factors of ten.
|
||||
|
||||
\end{parts}
|
||||
|
||||
\end{questions}
|
||||
|
||||
\end{document}
|
44
projects/project_isipdffit/lifouspikes.m
Normal file
44
projects/project_isipdffit/lifouspikes.m
Normal file
@ -0,0 +1,44 @@
|
||||
function spikes = lifouspikes( trials, input, tmaxdt, D, outau )
|
||||
% Generate spike times of a leaky integrate-and-fire neuron
|
||||
% trials: the number of trials to be generated
|
||||
% input: the stimulus either as a single value or as a vector
|
||||
% tmaxdt: in case of a single value stimulus the duration of a trial
|
||||
% in case of a vector as a stimulus the time step
|
||||
% D: the strength of additive white noise
|
||||
% outau: time constant of the colored noise
|
||||
|
||||
tau = 0.01;
|
||||
if nargin < 4
|
||||
D = 1e0;
|
||||
end
|
||||
if nargin < 5
|
||||
outau = 1.0;
|
||||
end
|
||||
vreset = 0.0;
|
||||
vthresh = 10.0;
|
||||
dt = 1e-4;
|
||||
|
||||
if length( input ) == 1
|
||||
input = input * ones( ceil( tmaxdt/dt ), 1 );
|
||||
else
|
||||
dt = tmaxdt;
|
||||
end
|
||||
spikes = cell( trials, 1 );
|
||||
for k=1:trials
|
||||
times = [];
|
||||
j = 1;
|
||||
n = 0.0;
|
||||
v = vreset;
|
||||
noise = sqrt(2.0*D)*randn( length( input ), 1 )/sqrt(dt);
|
||||
for i=1:length( noise )
|
||||
n = n + ( - n + noise(i))*dt/outau;
|
||||
v = v + ( - v + n + input(i))*dt/tau;
|
||||
if v >= vthresh
|
||||
v = vreset;
|
||||
times(j) = i*dt;
|
||||
j = j + 1;
|
||||
end
|
||||
end
|
||||
spikes{k} = times;
|
||||
end
|
||||
end
|
44
projects/project_isipdffit/pifouspikes.m
Normal file
44
projects/project_isipdffit/pifouspikes.m
Normal file
@ -0,0 +1,44 @@
|
||||
function spikes = pifouspikes( trials, input, tmaxdt, D, outau )
|
||||
% Generate spike times of a perfect integrate-and-fire neuron
|
||||
% trials: the number of trials to be generated
|
||||
% input: the stimulus either as a single value or as a vector
|
||||
% tmaxdt: in case of a single value stimulus the duration of a trial
|
||||
% in case of a vector as a stimulus the time step
|
||||
% D: the strength of additive white noise
|
||||
% outau: time constant of the colored noise
|
||||
|
||||
tau = 0.01;
|
||||
if nargin < 4
|
||||
D = 1e0;
|
||||
end
|
||||
if nargin < 5
|
||||
outau = 1.0;
|
||||
end
|
||||
vreset = 0.0;
|
||||
vthresh = 10.0;
|
||||
dt = 1e-4;
|
||||
|
||||
if length( input ) == 1
|
||||
input = input * ones( ceil( tmaxdt/dt ), 1 );
|
||||
else
|
||||
dt = tmaxdt;
|
||||
end
|
||||
spikes = cell( trials, 1 );
|
||||
for k=1:trials
|
||||
times = [];
|
||||
j = 1;
|
||||
n = 0.0;
|
||||
v = vreset;
|
||||
noise = sqrt(2.0*D)*randn( length( input ), 1 )/sqrt(dt);
|
||||
for i=1:length( noise )
|
||||
n = n + ( - n + noise(i))*dt/outau;
|
||||
v = v + ( n + input(i))*dt/tau;
|
||||
if v >= vthresh
|
||||
v = vreset;
|
||||
times(j) = i*dt;
|
||||
j = j + 1;
|
||||
end
|
||||
end
|
||||
spikes{k} = times;
|
||||
end
|
||||
end
|
0
projects/project_mutualinfo/mutualinfo.tex
Executable file → Normal file
0
projects/project_mutualinfo/mutualinfo.tex
Executable file → Normal file
10
projects/project_noiseficurves/Makefile
Normal file
10
projects/project_noiseficurves/Makefile
Normal file
@ -0,0 +1,10 @@
|
||||
latex:
|
||||
pdflatex *.tex > /dev/null
|
||||
pdflatex *.tex > /dev/null
|
||||
|
||||
clean:
|
||||
rm -rf *.log *.aux *.zip *.out auto
|
||||
rm -f `basename *.tex .tex`.pdf
|
||||
|
||||
zip: latex
|
||||
zip `basename *.tex .tex`.zip *.pdf *.dat *.mat *.m
|
38
projects/project_noiseficurves/lifspikes.m
Normal file
38
projects/project_noiseficurves/lifspikes.m
Normal file
@ -0,0 +1,38 @@
|
||||
function spikes = lifspikes( trials, input, tmaxdt, D )
|
||||
% Generate spike times of a leaky integrate-and-fire neuron
|
||||
% trials: the number of trials to be generated
|
||||
% input: the stimulus either as a single value or as a vector
|
||||
% tmaxdt: in case of a single value stimulus the duration of a trial
|
||||
% in case of a vector as a stimulus the time step
|
||||
% D: the strength of additive white noise
|
||||
|
||||
tau = 0.01;
|
||||
if nargin < 4
|
||||
D = 1e0;
|
||||
end
|
||||
vreset = 0.0;
|
||||
vthresh = 10.0;
|
||||
dt = 1e-4;
|
||||
|
||||
if length( input ) == 1
|
||||
input = input * ones( ceil( tmaxdt/dt ), 1 );
|
||||
else
|
||||
dt = tmaxdt;
|
||||
end
|
||||
spikes = cell( trials, 1 );
|
||||
for k=1:trials
|
||||
times = [];
|
||||
j = 1;
|
||||
v = vreset;
|
||||
noise = sqrt(2.0*D)*randn( length( input ), 1 )/sqrt(dt);
|
||||
for i=1:length( noise )
|
||||
v = v + ( - v + noise(i) + input(i))*dt/tau;
|
||||
if v >= vthresh
|
||||
v = vreset;
|
||||
times(j) = i*dt;
|
||||
j = j + 1;
|
||||
end
|
||||
end
|
||||
spikes{k} = times;
|
||||
end
|
||||
end
|
91
projects/project_noiseficurves/noiseficurves.tex
Normal file
91
projects/project_noiseficurves/noiseficurves.tex
Normal file
@ -0,0 +1,91 @@
|
||||
\documentclass[addpoints,10pt]{exam}
|
||||
\usepackage{url}
|
||||
\usepackage{color}
|
||||
\usepackage{hyperref}
|
||||
|
||||
\pagestyle{headandfoot}
|
||||
\runningheadrule
|
||||
\firstpageheadrule
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
|
||||
%\printanswers
|
||||
%\shadedsolutions
|
||||
|
||||
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\usepackage{listings}
|
||||
\lstset{
|
||||
basicstyle=\ttfamily,
|
||||
numbers=left,
|
||||
showstringspaces=false,
|
||||
language=Matlab,
|
||||
breaklines=true,
|
||||
breakautoindent=true,
|
||||
columns=flexible,
|
||||
frame=single,
|
||||
% captionpos=t,
|
||||
xleftmargin=2em,
|
||||
xrightmargin=1em,
|
||||
% aboveskip=10pt,
|
||||
%title=\lstname,
|
||||
% title={\protect\filename@parse{\lstname}\protect\filename@base.\protect\filename@ext}
|
||||
}
|
||||
|
||||
|
||||
\begin{document}
|
||||
%%%%%%%%%%%%%%%%%%%%% Submission instructions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\sffamily
|
||||
% \begin{flushright}
|
||||
% \gradetable[h][questions]
|
||||
% \end{flushright}
|
||||
|
||||
\begin{center}
|
||||
\input{../disclaimer.tex}
|
||||
\end{center}
|
||||
|
||||
%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\begin{questions}
|
||||
\question You are recording the activity of a neuron in response to
|
||||
constant stimuli of intensity $I$ (think of that, for example,
|
||||
of sound waves with intensities $I$).
|
||||
|
||||
Measure the tuning curve (also called the intensity-response curve) of the
|
||||
neuron. That is, what is the firing rate of the neuron's response
|
||||
as a function of the input $I$. How does this depend on the level of
|
||||
the intrinsic noise of the neuron?
|
||||
|
||||
\begin{parts}
|
||||
\part The neuron is implemented in the file \texttt{lifspikes.m}.
|
||||
Call it with the following parameters:
|
||||
\begin{lstlisting}
|
||||
trials = 10;
|
||||
tmax = 50.0;
|
||||
input = 10.0; % the input I
|
||||
Dnoise = 1.0; % noise strength
|
||||
|
||||
spikes = lifspikes( trials, input, tmax, Dnoise );
|
||||
\end{lstlisting}
|
||||
The returned \texttt{spikes} is a cell array with \texttt{trials} elements, each being a vector
|
||||
of spike times (in seconds) computed for a duration of \texttt{tmax} seconds.
|
||||
The input is set via the \texttt{input} variable, the noise strength via \texttt{Dnoise}.
|
||||
|
||||
\part First set the noise \texttt{Dnoise=0} (no noise). Compute and plot the firing rate
|
||||
as a function of the input for inputs ranging from 0 to 20.
|
||||
|
||||
\part Do the same for various noise strength \texttt{Dnoise}. Use $D_{noise} = 1e-3$,
|
||||
1e-2, and 1e-1. How does the intrinsic noise influence the response curve?
|
||||
|
||||
\part Show some interspike interval histograms for some interesting values of the input
|
||||
and the noise strength.
|
||||
|
||||
\end{parts}
|
||||
|
||||
\end{questions}
|
||||
|
||||
\end{document}
|
0
projects/project_numbers/numbers.tex
Executable file → Normal file
0
projects/project_numbers/numbers.tex
Executable file → Normal file
0
projects/project_onset_fi/onset_fi.tex
Executable file → Normal file
0
projects/project_onset_fi/onset_fi.tex
Executable file → Normal file
0
projects/project_q-values/qvalues.tex
Executable file → Normal file
0
projects/project_q-values/qvalues.tex
Executable file → Normal file
0
projects/project_spectra/spectra.tex
Executable file → Normal file
0
projects/project_spectra/spectra.tex
Executable file → Normal file
0
projects/project_steady_fi/steady_state_fi.tex
Executable file → Normal file
0
projects/project_steady_fi/steady_state_fi.tex
Executable file → Normal file
0
projects/project_stimulus_reconstruction/stimulus_reconstruction.tex
Executable file → Normal file
0
projects/project_stimulus_reconstruction/stimulus_reconstruction.tex
Executable file → Normal file
@ -7,4 +7,4 @@ clean:
|
||||
rm -f `basename *.tex .tex`.pdf
|
||||
|
||||
zip: latex
|
||||
zip `basename *.tex .tex`.zip *.pdf *.dat *.mat
|
||||
zip `basename *.tex .tex`.zip *.pdf *.dat *.mat *.m
|
||||
|
0
projects/project_template/template.tex
Executable file → Normal file
0
projects/project_template/template.tex
Executable file → Normal file
Reference in New Issue
Block a user