This repository has been archived on 2021-05-17. You can view files and clone it, but cannot push or open issues or pull requests.
scientificComputing/projects/project_noiseficurves/noiseficurves.tex
2014-11-02 13:35:52 +01:00

92 lines
2.6 KiB
TeX

\documentclass[addpoints,10pt]{exam}
\usepackage{url}
\usepackage{color}
\usepackage{hyperref}
\pagestyle{headandfoot}
\runningheadrule
\firstpageheadrule
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
-- 11/06/2014}
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
\firstpagefooter{}{}{}
\runningfooter{}{}{}
\pointsinmargin
\bracketedpoints
%\printanswers
%\shadedsolutions
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{listings}
\lstset{
basicstyle=\ttfamily,
numbers=left,
showstringspaces=false,
language=Matlab,
breaklines=true,
breakautoindent=true,
columns=flexible,
frame=single,
% captionpos=t,
xleftmargin=2em,
xrightmargin=1em,
% aboveskip=10pt,
%title=\lstname,
% title={\protect\filename@parse{\lstname}\protect\filename@base.\protect\filename@ext}
}
\begin{document}
%%%%%%%%%%%%%%%%%%%%% Submission instructions %%%%%%%%%%%%%%%%%%%%%%%%%
\sffamily
% \begin{flushright}
% \gradetable[h][questions]
% \end{flushright}
\begin{center}
\input{../disclaimer.tex}
\end{center}
%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
\begin{questions}
\question You are recording the activity of a neuron in response to
constant stimuli of intensity $I$ (think of that, for example,
of sound waves with intensities $I$).
Measure the tuning curve (also called the intensity-response curve) of the
neuron. That is, what is the firing rate of the neuron's response
as a function of the input $I$. How does this depend on the level of
the intrinsic noise of the neuron?
\begin{parts}
\part The neuron is implemented in the file \texttt{lifspikes.m}.
Call it with the following parameters:
\begin{lstlisting}
trials = 10;
tmax = 50.0;
input = 10.0; % the input I
Dnoise = 1.0; % noise strength
spikes = lifspikes( trials, input, tmax, Dnoise );
\end{lstlisting}
The returned \texttt{spikes} is a cell array with \texttt{trials} elements, each being a vector
of spike times (in seconds) computed for a duration of \texttt{tmax} seconds.
The input is set via the \texttt{input} variable, the noise strength via \texttt{Dnoise}.
\part First set the noise \texttt{Dnoise=0} (no noise). Compute and plot the firing rate
as a function of the input for inputs ranging from 0 to 20.
\part Do the same for various noise strength \texttt{Dnoise}. Use $D_{noise} = 1e-3$,
1e-2, and 1e-1. How does the intrinsic noise influence the response curve?
\part Show some interspike interval histograms for some interesting values of the input
and the noise strength.
\end{parts}
\end{questions}
\end{document}