This repository has been archived on 2021-05-17. You can view files and clone it, but cannot push or open issues or pull requests.
scientificComputing/projects/project_fano_time/fano_time.tex
2014-11-02 13:35:52 +01:00

120 lines
3.9 KiB
TeX

\documentclass[addpoints,10pt]{exam}
\usepackage{url}
\usepackage{color}
\usepackage{hyperref}
\pagestyle{headandfoot}
\runningheadrule
\firstpageheadrule
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
-- 11/06/2014}
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
\firstpagefooter{}{}{}
\runningfooter{}{}{}
\pointsinmargin
\bracketedpoints
%\printanswers
%\shadedsolutions
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{listings}
\lstset{
basicstyle=\ttfamily,
numbers=left,
showstringspaces=false,
language=Matlab,
breaklines=true,
breakautoindent=true,
columns=flexible,
frame=single,
% captionpos=t,
xleftmargin=2em,
xrightmargin=1em,
% aboveskip=10pt,
%title=\lstname,
% title={\protect\filename@parse{\lstname}\protect\filename@base.\protect\filename@ext}
}
\begin{document}
%%%%%%%%%%%%%%%%%%%%% Submission instructions %%%%%%%%%%%%%%%%%%%%%%%%%
\sffamily
% \begin{flushright}
% \gradetable[h][questions]
% \end{flushright}
\begin{center}
\input{../disclaimer.tex}
\end{center}
%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
\begin{questions}
\question You are recording the activity of a neuron in response to
two different stimuli $I_1$ and $I_2$ (think of them, for example,
of two sound waves with different intensities $I_1$ and
$I_2$). Within an observation time of duration $W$ the neuron
responds stochastically with $n_i$ spikes.
How well can an upstream neuron discriminate the two
stimuli based on the spike counts $n_i$? How does this depend on the
duration $W$ of the observation time? How is this related to the fano factor
(the ratio between the variance and the mean of the spike counts)?
\begin{parts}
\part The neuron is implemented in the file \texttt{lifadaptspikes.m}.
Call it with the following parameters:
\begin{lstlisting}
trials = 10;
tmax = 50.0;
input = 65.0;
Dnoise = 0.1;
adapttau = 0.2;
adaptincr = 0.5;
spikes = lifadaptspikes( trials, input, tmax, Dnoise, adapttau, adaptincr );
\end{lstlisting}
The returned \texttt{spikes} is a cell array with \texttt{trials} elements, each being a vector
of spike times (in seconds) computed for a duration of \texttt{tmax} seconds.
For the two inputs $I_1$ and $I_2$ use
\begin{lstlisting}
input = 65.0; % I_1
input = 75.0; % I_2
\end{lstlisting}
Show two raster plots for the responses to the two differrent stimuli.
\part Generate histograms of the spike counts within $W$ of the
responses to the two differrent stimuli. How do they depend on the observation time $W$
(use values between 1\,ms and 1\,s)?
\part Think about a measure based on the spike count histograms that quantifies how well
the two stimuli can be distinguished based on the spike
counts. Plot the dependence of this measure as a function of the observation time $W$.
For which observation times can the two stimuli perfectly discriminated?
Hint: A possible readout is to set a threshold $n_{thresh}$ for
the observed spike count. Any response smaller than the threshold
assumes that the stimulus was $I_1$, any response larger than the
threshold assumes that the stimulus was $I_2$. What is the
probability that the stimulus was indeed $I_1$ or $I_2$,
respectively? For a given $W$ find the threshold $n_{thresh}$ that
results in the best discrimination performance.
\part Also plot the Fano factor as a function of $W$. How is it related to the discriminability?
\uplevel{If you still have time you can continue with the following question:}
\part You may change the two stimuli $I_1$ and $I_2$ and the intrinsic noise of the neuron via
\texttt{Dnoise} (change it in factors of ten, higher values will make the responses more variable)
and repeat your analysis.
\end{parts}
\end{questions}
\end{document}