09.07
This commit is contained in:
parent
cf22967f48
commit
d4f534316a
@ -49,9 +49,9 @@ def parse_dataset(dataset_name):
|
||||
|
||||
if '#Key' in l:
|
||||
if len(time) != 0: #therefore empty in the first round
|
||||
times.append(time) #2nd loop means time != 0, so we put the times/amplitudes/frequencies to
|
||||
amplitudes.append(ampl) #the data of the first loop
|
||||
frequencies.append(freq)
|
||||
times.append(np.array(time)) #2nd loop means time != 0, so we put the times/amplitudes/frequencies to
|
||||
amplitudes.append(np.array(ampl)) #the data of the first loop
|
||||
frequencies.append(np.array(freq))
|
||||
|
||||
time = [] #temporary lists to overwrite the lists with the same name we made before
|
||||
ampl = [] #so they are empty again
|
||||
@ -63,9 +63,9 @@ def parse_dataset(dataset_name):
|
||||
freq.append(temporary[1])
|
||||
ampl.append(temporary[2])
|
||||
|
||||
times.append(time) #append data from one list to another
|
||||
amplitudes.append(ampl) #these append the data from the first loop to the final lists, because we overwrite them (?)
|
||||
frequencies.append(freq)
|
||||
times.append(np.array(time)) #append data from one list to another
|
||||
amplitudes.append(np.array(ampl)) #these append the data from the first loop to the final lists, because we overwrite them (?)
|
||||
frequencies.append(np.array(freq))
|
||||
|
||||
return frequencies, times, amplitudes, eodfs, deltafs, stimulusfs, duration, pause #output of the function
|
||||
|
||||
@ -83,16 +83,17 @@ def parse_infodataset(dataset_name):
|
||||
return identifier
|
||||
|
||||
def mean_traces(start, stop, timespan, frequencies, time):
|
||||
minimumt = min(len(time[0]), len(time[1]))
|
||||
minimumt = min([len(time[k]) for k in range(len(time))])
|
||||
# new time with wished timespan because it varies for different loops
|
||||
tnew = np.arange(start, stop, timespan / minimumt) # 3rd input is stepspacing:
|
||||
# in case complete measuring time devided by total number of datapoints
|
||||
# interpolation
|
||||
f0 = np.interp(tnew, time[0], frequencies[0])
|
||||
f1 = np.interp(tnew, time[1], frequencies[1])
|
||||
|
||||
#new array with frequencies of both loops as two lists put together
|
||||
frequency = np.array([f0, f1])
|
||||
frequency = np.zeros((len(frequencies), len(tnew)))
|
||||
for k in range(len(frequencies)):
|
||||
ft = time[k][frequencies[k] > -5]
|
||||
fn = frequencies[k][frequencies[k] > -5]
|
||||
frequency[k,:] = np.interp(tnew, ft, fn)
|
||||
|
||||
#making a mean over both loops with the axis 0 (=averaged in y direction, axis=1 would be over x axis)
|
||||
mf = np.mean(frequency, axis=0)
|
||||
|
130
step_response.py
Normal file
130
step_response.py
Normal file
@ -0,0 +1,130 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib as cm
|
||||
from matplotlib.colors import ListedColormap, LinearSegmentedColormap
|
||||
import os
|
||||
import glob
|
||||
import IPython
|
||||
import numpy as np
|
||||
from IPython import embed
|
||||
from scipy.optimize import curve_fit
|
||||
from jar_functions import parse_dataset
|
||||
from jar_functions import parse_infodataset
|
||||
from jar_functions import mean_traces
|
||||
from jar_functions import mean_noise_cut
|
||||
from jar_functions import norm_function
|
||||
from jar_functions import step_response
|
||||
from jar_functions import sort_values
|
||||
|
||||
base_path = 'D:\\jar_project\\JAR'
|
||||
|
||||
#nicht: -5Hz delta f, 19-aa, 22-ae, 22-ad (?)
|
||||
datasets = [#'2020-06-19-aa', #-5Hz delta f, horrible fit
|
||||
#(os.path.join('D:\\jar_project\\JAR\\2020-06-19-ab\\beats-eod.dat')), #-5Hz delta f, bad fit
|
||||
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-aa\\beats-eod.dat')), #-5Hz delta f, bad fit
|
||||
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ab\\beats-eod.dat')), #-5Hz delta f, bad fit
|
||||
'2020-06-22-ac', #-15Hz delta f, good fit
|
||||
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ad\\beats-eod.dat')), #-15Hz delta f, horrible fit
|
||||
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ae\\beats-eod.dat')), #-15Hz delta f, maxfev way to high so horrible
|
||||
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-af\\beats-eod.dat')) #-15Hz delta f, good fit
|
||||
]
|
||||
|
||||
#dat = glob.glob('D:\\jar_project\\JAR\\2020*\\beats-eod.dat')
|
||||
#infodat = glob.glob('D:\\jar_project\\JAR\\2020*\\info.dat')
|
||||
|
||||
infodatasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\info.dat')),
|
||||
(os.path.join('D:\\jar_project\\JAR\\2020-06-22-af\\info.dat'))]
|
||||
|
||||
time_all = []
|
||||
freq_all = []
|
||||
|
||||
ID = []
|
||||
col = ['darkgrey', 'lightgrey']
|
||||
|
||||
for infodataset in infodatasets:
|
||||
i = parse_infodataset(infodataset)
|
||||
identifier = i[0]
|
||||
ID.append(identifier)
|
||||
|
||||
|
||||
for idx, dataset in enumerate(datasets):
|
||||
dataset = os.path.join(base_path, dataset, 'beats-eod.dat')
|
||||
#input of the function
|
||||
frequency, time, amplitude, eodf, deltaf, stimulusf, duration, pause = parse_dataset(dataset)
|
||||
dm = np.mean(duration)
|
||||
pm = np.mean(pause)
|
||||
timespan = dm + pm
|
||||
start = np.mean([t[0] for t in time])
|
||||
stop = np.mean([t[-1] for t in time])
|
||||
mf , tnew = mean_traces(start, stop, timespan, frequency, time) # maybe fixed timespan/sampling rate
|
||||
|
||||
#for i in range(len(mf)):
|
||||
|
||||
cf, ct = mean_noise_cut(mf, tnew, n=1250)
|
||||
|
||||
cf_arr = np.array(cf)
|
||||
ct_arr = np.array(ct)
|
||||
|
||||
norm = norm_function(cf_arr, ct_arr, onset_point = dm - dm, offset_point = dm) #dm-dm funktioniert nur wenn onset = 0 sec
|
||||
|
||||
freq_all.append(norm)
|
||||
time_all.append(ct_arr)
|
||||
|
||||
#plt.plot(ct_arr, norm) #, color = col[idx], label='fish=%s' % ID[idx])
|
||||
|
||||
# fit function
|
||||
ft = ct_arr[ct_arr < dm]
|
||||
fn = norm[ct_arr < dm]
|
||||
ft = ft[fn > -5]
|
||||
fn = fn[fn > -5]
|
||||
sv, sc = curve_fit(step_response, ft, fn, [1.0, 1.0, 5.0, 50.0], bounds=(0.0, np.inf)) #step_values and step_cov
|
||||
|
||||
# sorted a and tau
|
||||
values = sort_values(sv)
|
||||
|
||||
'''
|
||||
# fit for each trace
|
||||
plt.plot(ct_arr[ct_arr < 100], step_response(ct_arr, *sv)[ct_arr < 100], color='orange',
|
||||
label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values))
|
||||
'''
|
||||
|
||||
print('fish: a1, a2, tau1, tau2', values)
|
||||
|
||||
# average over all fish
|
||||
mf_all , tnew_all = mean_traces(start, stop, timespan, freq_all, time_all)
|
||||
|
||||
plt.plot(tnew_all, mf_all, color = 'b', label = 'average', ls = 'dashed')
|
||||
|
||||
# fit for average
|
||||
sv_all, sc_all = curve_fit(step_response, tnew_all[tnew_all < dm], mf_all[tnew_all < dm], bounds=(0.0, np.inf)) #step_values and step_cov
|
||||
|
||||
values_all = sort_values(sv_all)
|
||||
|
||||
plt.plot(tnew_all[tnew_all < 100], step_response(tnew_all, *sv_all)[tnew_all < 100], color='orange',
|
||||
label='average_fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values_all))
|
||||
|
||||
print('average: a1, a2, tau1, tau2', values_all)
|
||||
|
||||
const_line = plt.axhline(y = 0.632)
|
||||
stimulus_duration = plt.hlines(y = -0.25, xmin = 0, xmax = 100, color = 'r', label = 'stimulus_duration')
|
||||
base_line = plt.axhline(y = 0, color = 'black', ls = 'dotted', linewidth = '1')
|
||||
|
||||
plt.xlim([-10,220])
|
||||
plt.xlabel('time [s]')
|
||||
plt.ylabel('rel. JAR magnitude')
|
||||
plt.title('relative JAR')
|
||||
plt.savefig('relative JAR')
|
||||
plt.legend(loc = 'lower right')
|
||||
plt.show()
|
||||
embed()
|
||||
|
||||
# norm vor mean_traces damit cutoff von -5
|
||||
# average über alle fische eigentlich mal nicht nötig, auslagern
|
||||
# nur bei -15 Hz messen
|
||||
# bei verschiedenen amplituden messen (siehe Tim)
|
||||
# natalie fragen ob sie bei verschiedenen Amplituden messen kann (siehe tim)
|
||||
|
||||
# Fragen:
|
||||
# wie offset point wenn nicht start bei 0 sec? über zeitdatenpunkt? oder einfach immer bei 0 onset..?
|
||||
# wie zip ich ID liste mit plot (für eine for schleife) zusammen?
|
||||
# welche Stimulusintesität?
|
||||
# start/stop/timespan ok?
|
Loading…
Reference in New Issue
Block a user