This commit is contained in:
xaver 2020-07-09 16:52:48 +02:00
parent 275b4bc473
commit cf22967f48
2 changed files with 9 additions and 118 deletions

View File

@ -2,6 +2,15 @@ import os #compability with windows
from IPython import embed
import numpy as np
def step_response(t, a1, a2, tau1, tau2):
r_step = (a1*(1 - np.exp(-t/tau1))) + (a2*(1 - np.exp(-t/tau2)))
r_step[t<0] = 0
return r_step
def sin_response(t, f, p, A):
r_sin = A*sin(2*np.pi*t*f + p)
return r_sin
def parse_dataset(dataset_name):
assert(os.path.exists(dataset_name)) #see if data exists
f = open(dataset_name, 'r') #open data we gave in
@ -100,12 +109,6 @@ def mean_noise_cut(frequencies, time, n):
cutt.append(t)
return cutf, cutt
def step_response(t, a1, a2, tau1, tau2):
r_step = (a1*(1 - np.exp(-t/tau1))) + (a2*(1 - np.exp(-t/tau2)))
r_step[t<0] = 0
return r_step
def norm_function(cf_arr, ct_arr, onset_point, offset_point):
onset_end = onset_point - 10
offset_start = offset_point - 10

View File

@ -1,112 +0,0 @@
import matplotlib.pyplot as plt
import os
import glob
import IPython
import numpy as np
from IPython import embed
from scipy.optimize import curve_fit
from jar_functions import parse_dataset
from jar_functions import parse_infodataset
from jar_functions import mean_traces
from jar_functions import mean_noise_cut
from jar_functions import norm_function
from jar_functions import step_response
from jar_functions import sort_values
#nicht: 19-aa, 22-ae, 22-ad (?)
datasets = [#(os.path.join('D:\\jar_project\\JAR\\2020-06-19-aa\\beats-eod.dat')), #-5Hz delta f, horrible fit
#(os.path.join('D:\\jar_project\\JAR\\2020-06-19-ab\\beats-eod.dat')), #-5Hz delta f, bad fit
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-aa\\beats-eod.dat')), #-5Hz delta f, bad fit
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ab\\beats-eod.dat')), #-5Hz delta f, bad fit
(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat')), #-15Hz delta f, good fit
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ad\\beats-eod.dat')), #-15Hz delta f, horrible fit
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ae\\beats-eod.dat')), #-15Hz delta f, maxfev way to high so horrible
(os.path.join('D:\\jar_project\\JAR\\2020-06-22-af\\beats-eod.dat'))] #-15Hz delta f, good fit
#np.array(sorted(glob.glob('D:\\jar_project\\JAR\\2020*\\beats-eod.dat')))
infodatasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\info.dat')),
(os.path.join('D:\\jar_project\\JAR\\2020-06-22-af\\info.dat'))]
time_all = []
freq_all = []
ID = []
for infodataset in infodatasets:
i = parse_infodataset(infodataset)
identifier = i[0]
ID.append(identifier)
for idx, dataset in enumerate(datasets):
#input of the function
frequency, time, amplitude, eodf, deltaf, stimulusf, duration, pause = parse_dataset(dataset)
dm = np.mean(duration)
pm = np.mean(pause)
timespan = dm + pm
start = (time[0][0] + time[1][0]) / 2
stop = (time[0][-1] + time[1][-1]) / 2
mf , tnew = mean_traces(start, stop, timespan, frequency, time) # maybe fixed timespan/sampling rate
#for i in range(len(mf)):
cf, ct = mean_noise_cut(mf, tnew, n=1250)
cf_arr = np.array(cf)
ct_arr = np.array(ct)
norm = norm_function(cf_arr, ct_arr, onset_point = dm - dm, offset_point = dm) #dm-dm funktioniert nur wenn onset = 0 sec
freq_all.append(norm.tolist())
time_all.append(ct_arr)
plt.plot(ct_arr, norm, color = 'grey', label='fish=%s' % ID[idx])
# fit function
sv, sc = curve_fit(step_response, ct_arr[ct_arr < dm], norm[ct_arr < dm]) #step_values and step_cov
# sorted a and tau
values = sort_values(sv)
'''
plt.plot(ct_arr[ct_arr < 100], step_response(ct_arr, *sv)[ct_arr < 100], color='orange',
label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values))
'''
print('fish: a1, a2, tau1, tau2', values)
# average over all fish
mf_all , tnew_all = mean_traces(start, stop, timespan, freq_all, time_all)
plt.plot(tnew_all, mf_all, color = 'b', label = 'average', ls = 'dashed')
# fit for average
sv_all, sc_all = curve_fit(step_response, tnew_all[tnew_all < dm], mf_all[tnew_all < dm]) #step_values and step_cov
values_all = sort_values(sv_all)
plt.plot(tnew_all[tnew_all < 100], step_response(tnew_all, *sv_all)[tnew_all < 100], color='orange',
label='average_fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values_all))
print('average: a1, a2, tau1, tau2', values_all)
const_line = plt.axhline(y = 0.632)
stimulus_duration = plt.hlines(y = -0.25, xmin = 0, xmax = 100, color = 'r', label = 'stimulus_duration')
base_line = plt.axhline(y = 0, color = 'black', ls = 'dotted', linewidth = '1')
plt.xlim([-10,220])
plt.xlabel('time [s]')
plt.ylabel('rel. JAR magnitude')
plt.title('relative JAR')
plt.savefig('relative JAR')
plt.legend(loc = 'lower right')
plt.show()
embed()
# Fragen:
# wie offset point wenn nicht start bei 0 sec? über zeitdatenpunkt? oder einfach immer bei 0 onset..?
# wie zip ich ID liste mit plot (für eine for schleife) zusammen?
# welche Stimulusintesität?
# start/stop/timespan ok?