130 lines
4.7 KiB
Python
130 lines
4.7 KiB
Python
import matplotlib.pyplot as plt
|
|
import matplotlib as cm
|
|
from matplotlib.colors import ListedColormap, LinearSegmentedColormap
|
|
import os
|
|
import glob
|
|
import IPython
|
|
import numpy as np
|
|
from IPython import embed
|
|
from scipy.optimize import curve_fit
|
|
from jar_functions import parse_dataset
|
|
from jar_functions import parse_infodataset
|
|
from jar_functions import mean_traces
|
|
from jar_functions import mean_noise_cut
|
|
from jar_functions import norm_function
|
|
from jar_functions import step_response
|
|
from jar_functions import sort_values
|
|
|
|
base_path = 'D:\\jar_project\\JAR'
|
|
|
|
#nicht: -5Hz delta f, 19-aa, 22-ae, 22-ad (?)
|
|
datasets = [#'2020-06-19-aa', #-5Hz delta f, horrible fit
|
|
#(os.path.join('D:\\jar_project\\JAR\\2020-06-19-ab\\beats-eod.dat')), #-5Hz delta f, bad fit
|
|
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-aa\\beats-eod.dat')), #-5Hz delta f, bad fit
|
|
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ab\\beats-eod.dat')), #-5Hz delta f, bad fit
|
|
'2020-06-22-ac', #-15Hz delta f, good fit
|
|
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ad\\beats-eod.dat')), #-15Hz delta f, horrible fit
|
|
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ae\\beats-eod.dat')), #-15Hz delta f, maxfev way to high so horrible
|
|
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-af\\beats-eod.dat')) #-15Hz delta f, good fit
|
|
]
|
|
|
|
#dat = glob.glob('D:\\jar_project\\JAR\\2020*\\beats-eod.dat')
|
|
#infodat = glob.glob('D:\\jar_project\\JAR\\2020*\\info.dat')
|
|
|
|
infodatasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\info.dat')),
|
|
(os.path.join('D:\\jar_project\\JAR\\2020-06-22-af\\info.dat'))]
|
|
|
|
time_all = []
|
|
freq_all = []
|
|
|
|
ID = []
|
|
col = ['darkgrey', 'lightgrey']
|
|
|
|
for infodataset in infodatasets:
|
|
i = parse_infodataset(infodataset)
|
|
identifier = i[0]
|
|
ID.append(identifier)
|
|
|
|
|
|
for idx, dataset in enumerate(datasets):
|
|
dataset = os.path.join(base_path, dataset, 'beats-eod.dat')
|
|
#input of the function
|
|
frequency, time, amplitude, eodf, deltaf, stimulusf, duration, pause = parse_dataset(dataset)
|
|
dm = np.mean(duration)
|
|
pm = np.mean(pause)
|
|
timespan = dm + pm
|
|
start = np.mean([t[0] for t in time])
|
|
stop = np.mean([t[-1] for t in time])
|
|
mf , tnew = mean_traces(start, stop, timespan, frequency, time) # maybe fixed timespan/sampling rate
|
|
|
|
#for i in range(len(mf)):
|
|
|
|
cf, ct = mean_noise_cut(mf, tnew, n=1250)
|
|
|
|
cf_arr = np.array(cf)
|
|
ct_arr = np.array(ct)
|
|
|
|
norm = norm_function(cf_arr, ct_arr, onset_point = dm - dm, offset_point = dm) #dm-dm funktioniert nur wenn onset = 0 sec
|
|
|
|
freq_all.append(norm)
|
|
time_all.append(ct_arr)
|
|
|
|
#plt.plot(ct_arr, norm) #, color = col[idx], label='fish=%s' % ID[idx])
|
|
|
|
# fit function
|
|
ft = ct_arr[ct_arr < dm]
|
|
fn = norm[ct_arr < dm]
|
|
ft = ft[fn > -5]
|
|
fn = fn[fn > -5]
|
|
sv, sc = curve_fit(step_response, ft, fn, [1.0, 1.0, 5.0, 50.0], bounds=(0.0, np.inf)) #step_values and step_cov
|
|
|
|
# sorted a and tau
|
|
values = sort_values(sv)
|
|
|
|
'''
|
|
# fit for each trace
|
|
plt.plot(ct_arr[ct_arr < 100], step_response(ct_arr, *sv)[ct_arr < 100], color='orange',
|
|
label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values))
|
|
'''
|
|
|
|
print('fish: a1, a2, tau1, tau2', values)
|
|
|
|
# average over all fish
|
|
mf_all , tnew_all = mean_traces(start, stop, timespan, freq_all, time_all)
|
|
|
|
plt.plot(tnew_all, mf_all, color = 'b', label = 'average', ls = 'dashed')
|
|
|
|
# fit for average
|
|
sv_all, sc_all = curve_fit(step_response, tnew_all[tnew_all < dm], mf_all[tnew_all < dm], bounds=(0.0, np.inf)) #step_values and step_cov
|
|
|
|
values_all = sort_values(sv_all)
|
|
|
|
plt.plot(tnew_all[tnew_all < 100], step_response(tnew_all, *sv_all)[tnew_all < 100], color='orange',
|
|
label='average_fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values_all))
|
|
|
|
print('average: a1, a2, tau1, tau2', values_all)
|
|
|
|
const_line = plt.axhline(y = 0.632)
|
|
stimulus_duration = plt.hlines(y = -0.25, xmin = 0, xmax = 100, color = 'r', label = 'stimulus_duration')
|
|
base_line = plt.axhline(y = 0, color = 'black', ls = 'dotted', linewidth = '1')
|
|
|
|
plt.xlim([-10,220])
|
|
plt.xlabel('time [s]')
|
|
plt.ylabel('rel. JAR magnitude')
|
|
plt.title('relative JAR')
|
|
plt.savefig('relative JAR')
|
|
plt.legend(loc = 'lower right')
|
|
plt.show()
|
|
embed()
|
|
|
|
# norm vor mean_traces damit cutoff von -5
|
|
# average über alle fische eigentlich mal nicht nötig, auslagern
|
|
# nur bei -15 Hz messen
|
|
# bei verschiedenen amplituden messen (siehe Tim)
|
|
# natalie fragen ob sie bei verschiedenen Amplituden messen kann (siehe tim)
|
|
|
|
# Fragen:
|
|
# wie offset point wenn nicht start bei 0 sec? über zeitdatenpunkt? oder einfach immer bei 0 onset..?
|
|
# wie zip ich ID liste mit plot (für eine for schleife) zusammen?
|
|
# welche Stimulusintesität?
|
|
# start/stop/timespan ok? |