157 lines
5.9 KiB
Python
157 lines
5.9 KiB
Python
import os #compability with windows
|
|
from IPython import embed
|
|
import numpy as np
|
|
|
|
def step_response(t, a1, a2, tau1, tau2):
|
|
r_step = (a1*(1 - np.exp(-t/tau1))) + (a2*(1 - np.exp(-t/tau2)))
|
|
r_step[t<0] = 0
|
|
return r_step
|
|
|
|
def sin_response(t, f, p, A):
|
|
r_sin = A*sin(2*np.pi*t*f + p)
|
|
return r_sin
|
|
|
|
def parse_dataset(dataset_name):
|
|
assert(os.path.exists(dataset_name)) #see if data exists
|
|
f = open(dataset_name, 'r') #open data we gave in
|
|
lines = f.readlines() #read data
|
|
f.close() #?
|
|
|
|
# metadata lists for every loop
|
|
eodfs = []
|
|
deltafs = []
|
|
stimulusfs = []
|
|
duration = []
|
|
pause = []
|
|
|
|
# data itself
|
|
times = []
|
|
frequencies = []
|
|
amplitudes = []
|
|
|
|
# temporary lists with data we put in the lists above
|
|
time = []
|
|
ampl = []
|
|
freq = []
|
|
|
|
for i in range(len(lines)):
|
|
l = lines[i].strip() #all lines of textdata, exclude all empty lines (empty () default for spacebar)
|
|
if "#" in l and "EODf" in l: #if line starts with # EODf:
|
|
eodfs.append(float(l.split(':')[-1].strip()[:-2])) #append: line splitted by ':' the 2nd part ([-1],
|
|
if "#" in l and "Delta f" in l: #which got striped so we sure there is no space at the end,
|
|
deltafs.append(float(l.split(':')[-1].strip()[:-2])) #from that all expect the last two signs (Hz unit)
|
|
if "#" in l and "StimulusFrequency" in l: #this for different metadata in different lists
|
|
stimulusfs.append(float(l.split(':')[-1].strip()[:-2]))
|
|
if "#" in l and "Duration" in l:
|
|
duration.append(float(l.split(':')[-1].strip()[:-3]))
|
|
if "#" in l and "Pause" in l:
|
|
pause.append(float(l.split(':')[-1].strip()[:-3]))
|
|
|
|
if '#Key' in l:
|
|
if len(time) != 0: #therefore empty in the first round
|
|
times.append(np.array(time)) #2nd loop means time != 0, so we put the times/amplitudes/frequencies to
|
|
amplitudes.append(np.array(ampl)) #the data of the first loop
|
|
frequencies.append(np.array(freq))
|
|
|
|
time = [] #temporary lists to overwrite the lists with the same name we made before
|
|
ampl = [] #so they are empty again
|
|
freq = []
|
|
|
|
if len(l) > 0 and l[0] is not '#': #line not empty and doesnt start with #
|
|
temporary = list(map(float, l.split())) #temporary list where we got 3 index splitted by spacebar, map to find them
|
|
time.append(temporary[0]) #temporary lists with the data at that place, respectively
|
|
freq.append(temporary[1])
|
|
ampl.append(temporary[2])
|
|
|
|
times.append(np.array(time)) #append data from one list to another
|
|
amplitudes.append(np.array(ampl)) #these append the data from the first loop to the final lists, because we overwrite them (?)
|
|
frequencies.append(np.array(freq))
|
|
|
|
return frequencies, times, amplitudes, eodfs, deltafs, stimulusfs, duration, pause #output of the function
|
|
|
|
def parse_infodataset(dataset_name):
|
|
assert(os.path.exists(dataset_name)) #see if data exists
|
|
f = open(dataset_name, 'r') #open data we gave in
|
|
lines = f.readlines() #read data
|
|
f.close() #?
|
|
|
|
identifier = []
|
|
for i in range(len(lines)):
|
|
l = lines[i].strip() #all lines of textdata, exclude all empty lines (empty () default for spacebar)
|
|
if "#" in l and "Identifier" in l:
|
|
identifier.append((l.split(':')[-1].strip()[1:12]))
|
|
return identifier
|
|
|
|
def mean_traces(start, stop, timespan, frequencies, time):
|
|
minimumt = min([len(time[k]) for k in range(len(time))])
|
|
# new time with wished timespan because it varies for different loops
|
|
tnew = np.arange(start, stop, timespan / minimumt) # 3rd input is stepspacing:
|
|
# in case complete measuring time devided by total number of datapoints
|
|
# interpolation
|
|
#new array with frequencies of both loops as two lists put together
|
|
frequency = np.zeros((len(frequencies), len(tnew)))
|
|
for k in range(len(frequencies)):
|
|
ft = time[k][frequencies[k] > -5]
|
|
fn = frequencies[k][frequencies[k] > -5]
|
|
frequency[k,:] = np.interp(tnew, ft, fn)
|
|
|
|
#making a mean over both loops with the axis 0 (=averaged in y direction, axis=1 would be over x axis)
|
|
mf = np.mean(frequency, axis=0)
|
|
|
|
return mf, tnew
|
|
|
|
def mean_noise_cut(frequencies, time, n):
|
|
cutf = []
|
|
cutt = []
|
|
for k in np.arange(0, len(frequencies), n):
|
|
t = time[k]
|
|
f = np.mean(frequencies[k:k+n])
|
|
cutf.append(f)
|
|
cutt.append(t)
|
|
return cutf, cutt
|
|
|
|
def norm_function(cf_arr, ct_arr, onset_point, offset_point):
|
|
onset_end = onset_point - 10
|
|
offset_start = offset_point - 10
|
|
|
|
base = np.median(cf_arr[(ct_arr >= onset_end) & (ct_arr < onset_point)])
|
|
|
|
ground = cf_arr - base
|
|
|
|
jar = np.median(ground[(ct_arr >= offset_start) & (ct_arr < offset_point)])
|
|
|
|
norm = ground / jar
|
|
return norm
|
|
|
|
def base_eod(frequencies, time, onset_point):
|
|
base_eod = []
|
|
|
|
onset_end = onset_point - 10
|
|
|
|
base = np.median(frequencies[(time >= onset_end) & (time < onset_point)])
|
|
base_eod.append(base)
|
|
return base_eod
|
|
|
|
|
|
def JAR_eod(frequencies, time, offset_point):
|
|
jar_eod = []
|
|
|
|
offset_start = offset_point - 10
|
|
|
|
jar = np.median(frequencies[(time >= offset_start) & (time < offset_point)])
|
|
jar_eod.append(jar)
|
|
|
|
return jar_eod
|
|
|
|
def sort_values(values):
|
|
a = values[:2]
|
|
tau = np.array(sorted(values[2:], reverse=False))
|
|
values = np.array([a, tau])
|
|
values_flat = values.flatten()
|
|
return values_flat
|
|
|
|
|
|
|
|
|
|
|