blablub
This commit is contained in:
parent
9942fd37e1
commit
bf0fb6025b
@ -8,13 +8,22 @@ from IPython import embed
|
|||||||
# define sampling rate and data path
|
# define sampling rate and data path
|
||||||
sampling_rate = 40 #kHz
|
sampling_rate = 40 #kHz
|
||||||
data_dir = "../data"
|
data_dir = "../data"
|
||||||
dataset = "2018-11-09-ad-invivo-1"
|
dataset = "2018-11-14-aa-invivo-1"
|
||||||
|
#data = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1",\
|
||||||
|
# "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", \
|
||||||
|
# "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", \
|
||||||
|
# "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", \
|
||||||
|
# "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1",\
|
||||||
|
# "2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1"," 2018-11-20-ae-invivo-1", \
|
||||||
|
# "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1")
|
||||||
|
|
||||||
# parameters for binning, smoothing and plotting
|
# parameters for binning, smoothing and plotting
|
||||||
cut_window = 60
|
#cut_window = 60
|
||||||
|
cut_window = 20
|
||||||
chirp_size = 14 #ms
|
chirp_size = 14 #ms
|
||||||
neuronal_delay = 5 #ms
|
neuronal_delay = 5 #ms
|
||||||
chirp_start = int((-chirp_size/2+neuronal_delay+cut_window)*sampling_rate)
|
chirp_start = int((-chirp_size/2+neuronal_delay+cut_window)*sampling_rate)
|
||||||
chirp_end = int((chirp_size/2+neuronal_delay+cut_window+1)*sampling_rate)
|
chirp_end = int((chirp_size/2+neuronal_delay+cut_window)*sampling_rate)
|
||||||
num_bin = 12
|
num_bin = 12
|
||||||
window = 1 #ms
|
window = 1 #ms
|
||||||
time_axis = np.arange(-cut_window, cut_window, 1/sampling_rate) #steps
|
time_axis = np.arange(-cut_window, cut_window, 1/sampling_rate) #steps
|
||||||
@ -35,6 +44,8 @@ cut_range = np.arange(-cut_window*sampling_rate, cut_window*sampling_rate, 1)
|
|||||||
# make dictionaries for spiketimes
|
# make dictionaries for spiketimes
|
||||||
df_phase_time = {}
|
df_phase_time = {}
|
||||||
df_phase_binary = {}
|
df_phase_binary = {}
|
||||||
|
#embed()
|
||||||
|
#exit()
|
||||||
|
|
||||||
# iterate over delta f, repetition, phases and a single chirp
|
# iterate over delta f, repetition, phases and a single chirp
|
||||||
for deltaf in df_map.keys():
|
for deltaf in df_map.keys():
|
||||||
@ -46,9 +57,9 @@ for deltaf in df_map.keys():
|
|||||||
# check the phase
|
# check the phase
|
||||||
if phase[1] > phase_vec[idx] and phase[1] < phase_vec[idx+1]:
|
if phase[1] > phase_vec[idx] and phase[1] < phase_vec[idx+1]:
|
||||||
|
|
||||||
# get spikes between 50 ms befor and after the chirp
|
# get spikes between 50 ms before and after the chirp
|
||||||
spikes_to_cut = np.asarray(spikes[rep][phase])
|
spikes_to_cut = np.asarray(spikes[rep][phase])
|
||||||
spikes_cut = spikes_to_cut[(spikes_to_cut > -cut_window) & (spikes_to_cut < cut_window)]
|
spikes_cut = spikes_to_cut[(spikes_to_cut > -50) & (spikes_to_cut < 50)]
|
||||||
spikes_idx = np.round(spikes_cut*sampling_rate)
|
spikes_idx = np.round(spikes_cut*sampling_rate)
|
||||||
# also save as binary, 0 no spike, 1 spike
|
# also save as binary, 0 no spike, 1 spike
|
||||||
binary_spikes = np.isin(cut_range, spikes_idx)*1
|
binary_spikes = np.isin(cut_range, spikes_idx)*1
|
||||||
@ -95,7 +106,7 @@ for df in df_phase_time.keys():
|
|||||||
rbs = []
|
rbs = []
|
||||||
for i, train in enumerate(train_chirp):
|
for i, train in enumerate(train_chirp):
|
||||||
for j, train2 in enumerate(train_chirp):
|
for j, train2 in enumerate(train_chirp):
|
||||||
if np.array_equal(train, train2):
|
if i >= j:
|
||||||
continue
|
continue
|
||||||
else:
|
else:
|
||||||
rc, _ = ss.pearsonr(train, train2)
|
rc, _ = ss.pearsonr(train, train2)
|
||||||
@ -105,7 +116,8 @@ for df in df_phase_time.keys():
|
|||||||
|
|
||||||
r_train_chirp = np.mean(rcs)
|
r_train_chirp = np.mean(rcs)
|
||||||
r_train_beat = np.mean(rbs)
|
r_train_beat = np.mean(rbs)
|
||||||
|
embed()
|
||||||
|
exit()
|
||||||
csi_train = (r_train_chirp - r_train_beat) / (r_train_chirp + r_train_beat)
|
csi_train = (r_train_chirp - r_train_beat) / (r_train_chirp + r_train_beat)
|
||||||
csi_rate = (np.std(spikerate_chirp) - np.std(spikerate_beat)) / (np.std(spikerate_chirp) + np.std(spikerate_beat))
|
csi_rate = (np.std(spikerate_chirp) - np.std(spikerate_beat)) / (np.std(spikerate_chirp) + np.std(spikerate_beat))
|
||||||
|
|
||||||
@ -116,6 +128,9 @@ for df in df_phase_time.keys():
|
|||||||
csi_trains[df].append(csi_train)
|
csi_trains[df].append(csi_train)
|
||||||
csi_rates[df].append(csi_rate)
|
csi_rates[df].append(csi_rate)
|
||||||
|
|
||||||
|
#csi_trains[df].append(abs(csi_train))
|
||||||
|
#csi_rates[df].append(abs(csi_rate))
|
||||||
|
|
||||||
'''
|
'''
|
||||||
# plot
|
# plot
|
||||||
plot_trials = df_phase_time[df][phase]
|
plot_trials = df_phase_time[df][phase]
|
||||||
@ -138,9 +153,23 @@ for df in df_phase_time.keys():
|
|||||||
ax[1].set_ylabel('firing rate [Hz]', fontsize=12)
|
ax[1].set_ylabel('firing rate [Hz]', fontsize=12)
|
||||||
plt.show()
|
plt.show()
|
||||||
'''
|
'''
|
||||||
embed()
|
|
||||||
exit()
|
|
||||||
for i, k in enumerate(sorted(csi_rates.keys())):
|
|
||||||
print(csi_rates[k])
|
|
||||||
|
|
||||||
|
|
||||||
|
fig, ax = plt.subplots()
|
||||||
|
for i, k in enumerate(sorted(csi_rates.keys())):
|
||||||
|
ax.scatter(np.ones(len(csi_rates[k]))*i, csi_rates[k], s=20)
|
||||||
|
#ax.plot(i, np.mean(csi_rates[k]), 'o', markersize=15)
|
||||||
|
ax.legend(sorted(csi_rates.keys()), loc='upper left', bbox_to_anchor=(1.04, 1))
|
||||||
|
ax.plot(np.arange(-1, len(csi_rates.keys())+1), np.zeros(len(csi_rates.keys())+2), 'silver', linewidth=2, linestyle='--')
|
||||||
|
#ax.set_xticklabels(sorted(csi_rates.keys()))
|
||||||
|
fig.tight_layout()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
fig, ax = plt.subplots()
|
||||||
|
for i, k in enumerate(sorted(csi_trains.keys())):
|
||||||
|
ax.plot(np.ones(len(csi_trains[k]))*i, csi_trains[k], 'o')
|
||||||
|
#ax.plot(i, np.mean(csi_trains[k]), 'o', markersize=15)
|
||||||
|
ax.legend(sorted(csi_trains.keys()), loc='upper left', bbox_to_anchor=(1.04, 1))
|
||||||
|
ax.plot(np.arange(-1, len(csi_trains.keys())+1), np.zeros(len(csi_trains.keys())+2), 'silver', linewidth=2, linestyle='--')
|
||||||
|
#ax.set_xticklabels(sorted(csi_trains.keys()))
|
||||||
|
fig.tight_layout()
|
||||||
|
plt.show()
|
||||||
|
Loading…
Reference in New Issue
Block a user