176 lines
7.2 KiB
Python
176 lines
7.2 KiB
Python
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import scipy.stats as ss
|
|
from read_chirp_data import *
|
|
from utility import *
|
|
from IPython import embed
|
|
|
|
# define sampling rate and data path
|
|
sampling_rate = 40 #kHz
|
|
data_dir = "../data"
|
|
dataset = "2018-11-14-aa-invivo-1"
|
|
#data = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1",\
|
|
# "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", \
|
|
# "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", \
|
|
# "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", \
|
|
# "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1",\
|
|
# "2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1"," 2018-11-20-ae-invivo-1", \
|
|
# "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1")
|
|
|
|
# parameters for binning, smoothing and plotting
|
|
#cut_window = 60
|
|
cut_window = 20
|
|
chirp_size = 14 #ms
|
|
neuronal_delay = 5 #ms
|
|
chirp_start = int((-chirp_size/2+neuronal_delay+cut_window)*sampling_rate)
|
|
chirp_end = int((chirp_size/2+neuronal_delay+cut_window)*sampling_rate)
|
|
num_bin = 12
|
|
window = 1 #ms
|
|
time_axis = np.arange(-cut_window, cut_window, 1/sampling_rate) #steps
|
|
spike_bins = np.arange(-cut_window, cut_window+1) #ms
|
|
|
|
# read data from files
|
|
spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
|
|
eod = read_chirp_eod(os.path.join(data_dir, dataset))
|
|
chirp_times = read_chirp_times(os.path.join(data_dir, dataset))
|
|
|
|
# make a delta f map for the quite more complicated keys
|
|
df_map = map_keys(spikes)
|
|
|
|
# differentiate between phases
|
|
phase_vec = np.arange(0, 1+1/num_bin, 1/num_bin)
|
|
cut_range = np.arange(-cut_window*sampling_rate, cut_window*sampling_rate, 1)
|
|
|
|
# make dictionaries for spiketimes
|
|
df_phase_time = {}
|
|
df_phase_binary = {}
|
|
#embed()
|
|
#exit()
|
|
|
|
# iterate over delta f, repetition, phases and a single chirp
|
|
for deltaf in df_map.keys():
|
|
df_phase_time[deltaf] = {}
|
|
df_phase_binary[deltaf] = {}
|
|
for rep in df_map[deltaf]:
|
|
for phase in spikes[rep]:
|
|
for idx in np.arange(num_bin):
|
|
# check the phase
|
|
if phase[1] > phase_vec[idx] and phase[1] < phase_vec[idx+1]:
|
|
|
|
# get spikes between 50 ms before and after the chirp
|
|
spikes_to_cut = np.asarray(spikes[rep][phase])
|
|
spikes_cut = spikes_to_cut[(spikes_to_cut > -50) & (spikes_to_cut < 50)]
|
|
spikes_idx = np.round(spikes_cut*sampling_rate)
|
|
# also save as binary, 0 no spike, 1 spike
|
|
binary_spikes = np.isin(cut_range, spikes_idx)*1
|
|
|
|
# add the spikes to the dictionaries with the correct df and phase
|
|
if idx in df_phase_time[deltaf].keys():
|
|
df_phase_time[deltaf][idx].append(spikes_cut)
|
|
df_phase_binary[deltaf][idx] = np.vstack((df_phase_binary[deltaf][idx], binary_spikes))
|
|
else:
|
|
df_phase_time[deltaf][idx] = [spikes_cut]
|
|
df_phase_binary[deltaf][idx] = binary_spikes
|
|
|
|
|
|
# make dictionaries for csi
|
|
csi_trains = {}
|
|
csi_rates = {}
|
|
# for plotting and calculating iterate over delta f and phases
|
|
for df in df_phase_time.keys():
|
|
csi_trains[df] = []
|
|
csi_rates[df] = []
|
|
beat_duration = int(abs(1/df*1000)) #ms
|
|
beat_window = 0
|
|
while beat_window+beat_duration <= cut_window:
|
|
beat_window = beat_window+beat_duration
|
|
for phase in df_phase_time[df].keys():
|
|
|
|
# csi calculation
|
|
# trains for synchronity and rate
|
|
|
|
trials_binary = df_phase_binary[df][phase]
|
|
|
|
train_chirp = []
|
|
train_beat = []
|
|
spikerate_chirp = np.zeros(len(trials_binary))
|
|
spikerate_beat = np.zeros(len(trials_binary))
|
|
for i, trial in enumerate(trials_binary):
|
|
smoothed_trial = smooth(trial, window, 1/sampling_rate)
|
|
train_chirp.append(smoothed_trial[chirp_start:chirp_end])
|
|
train_beat.append(smoothed_trial[chirp_start-beat_window:chirp_start])
|
|
spikerate_chirp[i] = np.mean(smoothed_trial[chirp_start:chirp_end])
|
|
spikerate_beat[i] = np.mean(smoothed_trial[chirp_start-beat_window:chirp_start])
|
|
|
|
rcs = []
|
|
rbs = []
|
|
for i, train in enumerate(train_chirp):
|
|
for j, train2 in enumerate(train_chirp):
|
|
if i >= j:
|
|
continue
|
|
else:
|
|
rc, _ = ss.pearsonr(train, train2)
|
|
rb, _ = ss.pearsonr(train_beat[i], train_beat[j])
|
|
rcs.append(rc)
|
|
rbs.append(rb)
|
|
|
|
r_train_chirp = np.mean(rcs)
|
|
r_train_beat = np.mean(rbs)
|
|
embed()
|
|
exit()
|
|
csi_train = (r_train_chirp - r_train_beat) / (r_train_chirp + r_train_beat)
|
|
csi_rate = (np.std(spikerate_chirp) - np.std(spikerate_beat)) / (np.std(spikerate_chirp) + np.std(spikerate_beat))
|
|
|
|
# add the csi to the dictionaries with the correct df and phase
|
|
#csi_trains[df][phase] = csi_train
|
|
#csi_rates[df][phase] = csi_rate
|
|
|
|
csi_trains[df].append(csi_train)
|
|
csi_rates[df].append(csi_rate)
|
|
|
|
#csi_trains[df].append(abs(csi_train))
|
|
#csi_rates[df].append(abs(csi_rate))
|
|
|
|
'''
|
|
# plot
|
|
plot_trials = df_phase_time[df][phase]
|
|
plot_trials_binary = np.mean(df_phase_binary[df][phase], axis=0)
|
|
|
|
# calculation
|
|
#overall_spikerate = (np.sum(plot_trials_binary)/len(plot_trials_binary))*sampling_rate*1000
|
|
|
|
smoothed_spikes = smooth(plot_trials_binary, window, 1./sampling_rate)
|
|
|
|
fig, ax = plt.subplots(2, 1, sharex=True)
|
|
for i, trial in enumerate(plot_trials):
|
|
ax[0].scatter(trial, np.ones(len(trial))+i, marker='|', color='k')
|
|
ax[1].plot(time_axis, smoothed_spikes*1000)
|
|
|
|
ax[0].set_title(df)
|
|
ax[0].set_ylabel('repetition', fontsize=12)
|
|
|
|
ax[1].set_xlabel('time [ms]', fontsize=12)
|
|
ax[1].set_ylabel('firing rate [Hz]', fontsize=12)
|
|
plt.show()
|
|
'''
|
|
|
|
fig, ax = plt.subplots()
|
|
for i, k in enumerate(sorted(csi_rates.keys())):
|
|
ax.scatter(np.ones(len(csi_rates[k]))*i, csi_rates[k], s=20)
|
|
#ax.plot(i, np.mean(csi_rates[k]), 'o', markersize=15)
|
|
ax.legend(sorted(csi_rates.keys()), loc='upper left', bbox_to_anchor=(1.04, 1))
|
|
ax.plot(np.arange(-1, len(csi_rates.keys())+1), np.zeros(len(csi_rates.keys())+2), 'silver', linewidth=2, linestyle='--')
|
|
#ax.set_xticklabels(sorted(csi_rates.keys()))
|
|
fig.tight_layout()
|
|
plt.show()
|
|
|
|
fig, ax = plt.subplots()
|
|
for i, k in enumerate(sorted(csi_trains.keys())):
|
|
ax.plot(np.ones(len(csi_trains[k]))*i, csi_trains[k], 'o')
|
|
#ax.plot(i, np.mean(csi_trains[k]), 'o', markersize=15)
|
|
ax.legend(sorted(csi_trains.keys()), loc='upper left', bbox_to_anchor=(1.04, 1))
|
|
ax.plot(np.arange(-1, len(csi_trains.keys())+1), np.zeros(len(csi_trains.keys())+2), 'silver', linewidth=2, linestyle='--')
|
|
#ax.set_xticklabels(sorted(csi_trains.keys()))
|
|
fig.tight_layout()
|
|
plt.show()
|