diff --git a/code/spikes_analysis.py b/code/spikes_analysis.py index 7284cff..4ebdb0b 100644 --- a/code/spikes_analysis.py +++ b/code/spikes_analysis.py @@ -8,13 +8,22 @@ from IPython import embed # define sampling rate and data path sampling_rate = 40 #kHz data_dir = "../data" -dataset = "2018-11-09-ad-invivo-1" +dataset = "2018-11-14-aa-invivo-1" +#data = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1",\ +# "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", \ +# "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", \ +# "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", \ +# "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1",\ +# "2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1"," 2018-11-20-ae-invivo-1", \ +# "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1") + # parameters for binning, smoothing and plotting -cut_window = 60 +#cut_window = 60 +cut_window = 20 chirp_size = 14 #ms neuronal_delay = 5 #ms chirp_start = int((-chirp_size/2+neuronal_delay+cut_window)*sampling_rate) -chirp_end = int((chirp_size/2+neuronal_delay+cut_window+1)*sampling_rate) +chirp_end = int((chirp_size/2+neuronal_delay+cut_window)*sampling_rate) num_bin = 12 window = 1 #ms time_axis = np.arange(-cut_window, cut_window, 1/sampling_rate) #steps @@ -35,6 +44,8 @@ cut_range = np.arange(-cut_window*sampling_rate, cut_window*sampling_rate, 1) # make dictionaries for spiketimes df_phase_time = {} df_phase_binary = {} +#embed() +#exit() # iterate over delta f, repetition, phases and a single chirp for deltaf in df_map.keys(): @@ -46,9 +57,9 @@ for deltaf in df_map.keys(): # check the phase if phase[1] > phase_vec[idx] and phase[1] < phase_vec[idx+1]: - # get spikes between 50 ms befor and after the chirp + # get spikes between 50 ms before and after the chirp spikes_to_cut = np.asarray(spikes[rep][phase]) - spikes_cut = spikes_to_cut[(spikes_to_cut > -cut_window) & (spikes_to_cut < cut_window)] + spikes_cut = spikes_to_cut[(spikes_to_cut > -50) & (spikes_to_cut < 50)] spikes_idx = np.round(spikes_cut*sampling_rate) # also save as binary, 0 no spike, 1 spike binary_spikes = np.isin(cut_range, spikes_idx)*1 @@ -95,7 +106,7 @@ for df in df_phase_time.keys(): rbs = [] for i, train in enumerate(train_chirp): for j, train2 in enumerate(train_chirp): - if np.array_equal(train, train2): + if i >= j: continue else: rc, _ = ss.pearsonr(train, train2) @@ -105,7 +116,8 @@ for df in df_phase_time.keys(): r_train_chirp = np.mean(rcs) r_train_beat = np.mean(rbs) - + embed() + exit() csi_train = (r_train_chirp - r_train_beat) / (r_train_chirp + r_train_beat) csi_rate = (np.std(spikerate_chirp) - np.std(spikerate_beat)) / (np.std(spikerate_chirp) + np.std(spikerate_beat)) @@ -116,6 +128,9 @@ for df in df_phase_time.keys(): csi_trains[df].append(csi_train) csi_rates[df].append(csi_rate) + #csi_trains[df].append(abs(csi_train)) + #csi_rates[df].append(abs(csi_rate)) + ''' # plot plot_trials = df_phase_time[df][phase] @@ -138,9 +153,23 @@ for df in df_phase_time.keys(): ax[1].set_ylabel('firing rate [Hz]', fontsize=12) plt.show() ''' -embed() -exit() -for i, k in enumerate(sorted(csi_rates.keys())): - print(csi_rates[k]) - +fig, ax = plt.subplots() +for i, k in enumerate(sorted(csi_rates.keys())): + ax.scatter(np.ones(len(csi_rates[k]))*i, csi_rates[k], s=20) + #ax.plot(i, np.mean(csi_rates[k]), 'o', markersize=15) +ax.legend(sorted(csi_rates.keys()), loc='upper left', bbox_to_anchor=(1.04, 1)) +ax.plot(np.arange(-1, len(csi_rates.keys())+1), np.zeros(len(csi_rates.keys())+2), 'silver', linewidth=2, linestyle='--') +#ax.set_xticklabels(sorted(csi_rates.keys())) +fig.tight_layout() +plt.show() + +fig, ax = plt.subplots() +for i, k in enumerate(sorted(csi_trains.keys())): + ax.plot(np.ones(len(csi_trains[k]))*i, csi_trains[k], 'o') + #ax.plot(i, np.mean(csi_trains[k]), 'o', markersize=15) +ax.legend(sorted(csi_trains.keys()), loc='upper left', bbox_to_anchor=(1.04, 1)) +ax.plot(np.arange(-1, len(csi_trains.keys())+1), np.zeros(len(csi_trains.keys())+2), 'silver', linewidth=2, linestyle='--') +#ax.set_xticklabels(sorted(csi_trains.keys())) +fig.tight_layout() +plt.show()