csi stuff
This commit is contained in:
parent
db78cae061
commit
9942fd37e1
@ -62,14 +62,22 @@ for deltaf in df_map.keys():
|
||||
df_phase_binary[deltaf][idx] = binary_spikes
|
||||
|
||||
|
||||
# make dictionaries for csi
|
||||
csi_trains = {}
|
||||
csi_rates = {}
|
||||
# for plotting and calculating iterate over delta f and phases
|
||||
for df in df_phase_time.keys():
|
||||
csi_trains[df] = []
|
||||
csi_rates[df] = []
|
||||
beat_duration = int(abs(1/df*1000)) #ms
|
||||
beat_window = 0
|
||||
while beat_window+beat_duration <= cut_window:
|
||||
beat_window = beat_window+beat_duration
|
||||
for phase in df_phase_time[df].keys():
|
||||
|
||||
# csi calculation
|
||||
# trains for synchronity and rate
|
||||
|
||||
trials_binary = df_phase_binary[df][phase]
|
||||
|
||||
train_chirp = []
|
||||
@ -99,18 +107,23 @@ for df in df_phase_time.keys():
|
||||
r_train_beat = np.mean(rbs)
|
||||
|
||||
csi_train = (r_train_chirp - r_train_beat) / (r_train_chirp + r_train_beat)
|
||||
print(csi_train)
|
||||
csi_rate = (np.std(spikerate_chirp) - np.std(spikerate_beat)) / (np.std(spikerate_chirp) + np.std(spikerate_beat))
|
||||
print(csi_rate)
|
||||
|
||||
# add the csi to the dictionaries with the correct df and phase
|
||||
#csi_trains[df][phase] = csi_train
|
||||
#csi_rates[df][phase] = csi_rate
|
||||
|
||||
csi_trains[df].append(csi_train)
|
||||
csi_rates[df].append(csi_rate)
|
||||
|
||||
'''
|
||||
# plot
|
||||
#plot_trials = df_phase_time[df][phase]
|
||||
#plot_trials_binary = np.mean(df_phase_binary[df][phase], axis=0)
|
||||
plot_trials = df_phase_time[df][phase]
|
||||
plot_trials_binary = np.mean(df_phase_binary[df][phase], axis=0)
|
||||
|
||||
# calculation
|
||||
#overall_spikerate = (np.sum(plot_trials_binary)/len(plot_trials_binary))*sampling_rate*1000
|
||||
|
||||
'''
|
||||
smoothed_spikes = smooth(plot_trials_binary, window, 1./sampling_rate)
|
||||
|
||||
fig, ax = plt.subplots(2, 1, sharex=True)
|
||||
@ -125,15 +138,9 @@ for df in df_phase_time.keys():
|
||||
ax[1].set_ylabel('firing rate [Hz]', fontsize=12)
|
||||
plt.show()
|
||||
'''
|
||||
|
||||
|
||||
'''
|
||||
for trial in range(len(trials_binary)):
|
||||
spike_rate = np.zeros(len(spike_bins)-1)
|
||||
for idx in range(len(spike_bins)-1):
|
||||
bin_start = spike_bins[idx]*sampling_rate
|
||||
bin_end = spike_bins[idx+1]*sampling_rate
|
||||
spike_rate[idx] = np.sum(trials_binary[trial][bin_start:bin_end])
|
||||
embed()
|
||||
exit()
|
||||
'''
|
||||
for i, k in enumerate(sorted(csi_rates.keys())):
|
||||
print(csi_rates[k])
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user