floss dance

This commit is contained in:
Ramona 2018-11-23 12:05:38 +01:00
parent 9bb8d66478
commit db78cae061

View File

@ -1,5 +1,6 @@
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as ss
from read_chirp_data import *
from utility import *
from IPython import embed
@ -9,14 +10,15 @@ sampling_rate = 40 #kHz
data_dir = "../data"
dataset = "2018-11-09-ad-invivo-1"
# parameters for binning, smoothing and plotting
cut_window = 60
chirp_size = 14 #ms
neuronal_delay = 5 #ms
chirp_start = int((-chirp_size/2+neuronal_delay+50)*sampling_rate)
chirp_end = int((chirp_size/2+neuronal_delay+51)*sampling_rate)
chirp_start = int((-chirp_size/2+neuronal_delay+cut_window)*sampling_rate)
chirp_end = int((chirp_size/2+neuronal_delay+cut_window+1)*sampling_rate)
num_bin = 12
window = 1 #ms
time_axis = np.arange(-50, 50, 1/sampling_rate) #steps
spike_bins = np.arange(-50, 51) #ms
time_axis = np.arange(-cut_window, cut_window, 1/sampling_rate) #steps
spike_bins = np.arange(-cut_window, cut_window+1) #ms
# read data from files
spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
@ -24,17 +26,11 @@ eod = read_chirp_eod(os.path.join(data_dir, dataset))
chirp_times = read_chirp_times(os.path.join(data_dir, dataset))
# make a delta f map for the quite more complicated keys
df_map = {}
for k in spikes.keys():
df = k[1]
if df in df_map.keys():
df_map[df].append(k)
else:
df_map[df] = [k]
df_map = map_keys(spikes)
# differentiate between phases
phase_vec = np.arange(0, 1+1/num_bin, 1/num_bin)
cut_range = np.arange(-50*sampling_rate, 50*sampling_rate, 1)
cut_range = np.arange(-cut_window*sampling_rate, cut_window*sampling_rate, 1)
# make dictionaries for spiketimes
df_phase_time = {}
@ -52,7 +48,7 @@ for deltaf in df_map.keys():
# get spikes between 50 ms befor and after the chirp
spikes_to_cut = np.asarray(spikes[rep][phase])
spikes_cut = spikes_to_cut[(spikes_to_cut > -50) & (spikes_to_cut < 50)]
spikes_cut = spikes_to_cut[(spikes_to_cut > -cut_window) & (spikes_to_cut < cut_window)]
spikes_idx = np.round(spikes_cut*sampling_rate)
# also save as binary, 0 no spike, 1 spike
binary_spikes = np.isin(cut_range, spikes_idx)*1
@ -65,28 +61,47 @@ for deltaf in df_map.keys():
df_phase_time[deltaf][idx] = [spikes_cut]
df_phase_binary[deltaf][idx] = binary_spikes
# for plotting and calculating iterate over delta f and phases
for df in df_phase_time.keys():
beat_duration = int(abs(1/df*1000)) #ms
beat_window = 0
while beat_window+beat_duration <= cut_window:
beat_window = beat_window+beat_duration
for phase in df_phase_time[df].keys():
trials_binary = df_phase_binary[df][phase]
sr_chirp = np.zeros(len(trials_binary))
sr_beat = np.zeros(len(trials_binary))
train_chirp = []
train_beat = []
spikerate_chirp = np.zeros(len(trials_binary))
spikerate_beat = np.zeros(len(trials_binary))
for i, trial in enumerate(trials_binary):
smoothed_trial = smooth(trial, window, 1/sampling_rate)
sr_chirp[i] = np.mean(smoothed_trial[chirp_start:chirp_end])
sr_beat[i] = np.mean(smoothed_trial[0:chirp_start])
for rate_chirp in sr_chirp:
for rate_beat in sr_beat:
r = np.corrcoef(rate_chirp, rate_beat)
print(r)
embed()
exit()
#csi = (spikerate_chirp-spikerate_befor)/(spikerate_chirp+spikerate_befor)
train_chirp.append(smoothed_trial[chirp_start:chirp_end])
train_beat.append(smoothed_trial[chirp_start-beat_window:chirp_start])
spikerate_chirp[i] = np.mean(smoothed_trial[chirp_start:chirp_end])
spikerate_beat[i] = np.mean(smoothed_trial[chirp_start-beat_window:chirp_start])
rcs = []
rbs = []
for i, train in enumerate(train_chirp):
for j, train2 in enumerate(train_chirp):
if np.array_equal(train, train2):
continue
else:
rc, _ = ss.pearsonr(train, train2)
rb, _ = ss.pearsonr(train_beat[i], train_beat[j])
rcs.append(rc)
rbs.append(rb)
r_train_chirp = np.mean(rcs)
r_train_beat = np.mean(rbs)
csi_train = (r_train_chirp - r_train_beat) / (r_train_chirp + r_train_beat)
print(csi_train)
csi_rate = (np.std(spikerate_chirp) - np.std(spikerate_beat)) / (np.std(spikerate_chirp) + np.std(spikerate_beat))
print(csi_rate)
# plot
#plot_trials = df_phase_time[df][phase]