109 lines
3.7 KiB
Python
109 lines
3.7 KiB
Python
import matplotlib.pyplot as plt
|
|
import os
|
|
import glob
|
|
import IPython
|
|
import numpy as np
|
|
from IPython import embed
|
|
from scipy.optimize import curve_fit
|
|
from jar_functions import parse_dataset
|
|
from jar_functions import parse_infodataset
|
|
from jar_functions import mean_loops
|
|
from jar_functions import mean_noise_cut
|
|
from jar_functions import norm_function
|
|
from jar_functions import step_response
|
|
|
|
#nicht: 19-aa, 22-ae, 22-ad (?)
|
|
datasets = [#(os.path.join('D:\\jar_project\\JAR\\2020-06-19-aa\\beats-eod.dat')), #-5Hz delta f, horrible fit
|
|
#(os.path.join('D:\\jar_project\\JAR\\2020-06-19-ab\\beats-eod.dat')), #-5Hz delta f, bad fit
|
|
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-aa\\beats-eod.dat')), #-5Hz delta f, bad fit
|
|
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ab\\beats-eod.dat')), #-5Hz delta f, bad fit
|
|
(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat')), #-15Hz delta f, good fit
|
|
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ad\\beats-eod.dat')), #-15Hz delta f, horrible fit
|
|
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ae\\beats-eod.dat')), #-15Hz delta f, maxfev way to high so horrible
|
|
(os.path.join('D:\\jar_project\\JAR\\2020-06-22-af\\beats-eod.dat'))] #-15Hz delta f, good fit
|
|
|
|
#np.array(sorted(glob.glob('D:\\jar_project\\JAR\\2020*\\beats-eod.dat')))
|
|
|
|
infodatasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\info.dat')),
|
|
(os.path.join('D:\\jar_project\\JAR\\2020-06-22-af\\info.dat'))]
|
|
|
|
|
|
time_all = []
|
|
freq_all = []
|
|
|
|
constant_factors = []
|
|
time_constants = []
|
|
|
|
ID = []
|
|
|
|
for infodataset in infodatasets:
|
|
i = parse_infodataset(infodataset)
|
|
identifier = i[0]
|
|
ID.append(identifier)
|
|
|
|
|
|
for dataset in datasets:
|
|
#input of the function
|
|
frequency, time, amplitude, eodf, deltaf, stimulusf, duration, pause = parse_dataset(dataset)
|
|
dm = np.mean(duration)
|
|
pm = np.mean(pause)
|
|
timespan = dm + pm
|
|
start = -10
|
|
stop = 200
|
|
mf , tnew = mean_loops(start, stop, timespan, frequency, time)
|
|
|
|
#for i in range(len(mf)):
|
|
|
|
cf, ct = mean_noise_cut(mf, tnew, n=1250)
|
|
|
|
cf_arr = np.array(cf)
|
|
ct_arr = np.array(ct)
|
|
|
|
norm = norm_function(cf_arr, ct_arr, onset_point = dm - dm, offset_point = dm) #dm-dm funktioniert nur wenn onset = 0 sec
|
|
|
|
freq_all.append(norm.tolist())
|
|
time_all.append(ct_arr)
|
|
|
|
plt.plot(ct_arr, norm) #, label='fish=%s' % ID)
|
|
|
|
sv, sc = curve_fit(step_response, ct_arr[ct_arr < dm], norm[ct_arr < dm], maxfev = 2000) #step_values and step_cov
|
|
|
|
a = sv[:2]
|
|
tau = np.array(sorted(sv[2:], reverse=False))
|
|
values = np.array([a, tau])
|
|
values_flat = values.flatten()
|
|
|
|
plt.plot(ct_arr [ct_arr < 100], step_response(ct_arr, *sv)[ct_arr < 100], label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values_flat))
|
|
|
|
print('a1, a2, tau1, tau2', values_flat)
|
|
constant_factors.append(a)
|
|
time_constants.append(tau)
|
|
fr = []
|
|
for j in freq_all:
|
|
fr.append(freq_all[j])
|
|
embed()
|
|
minimumf_all = min(len(freq_all[j]))
|
|
f_all = freq_all[j][:minimumf_all]
|
|
print(freq_all[0])
|
|
print(len((freq_all[j])))
|
|
|
|
#f_all_arr = np.array([f0_all], [f1_all])
|
|
#f_mean_all = np.mean(freq_all, axis = 0)
|
|
#t_mean_all = np.mean(time_all, axis = 0)
|
|
|
|
const_line = plt.axhline(y=0.632)
|
|
plt.xlim([-10,220])
|
|
plt.xlabel('time [s]')
|
|
plt.ylabel('rel. JAR magnitude')
|
|
plt.title('relative JAR')
|
|
plt.savefig('relative JAR')
|
|
plt.legend(loc = 'lower right')
|
|
plt.show()
|
|
embed()
|
|
|
|
|
|
# alle daten einlesen durch große for schleife (auch average über alle fische?)
|
|
# für einzelne fische fit kontrollieren
|
|
|
|
# Fragen: wie offset point wenn nicht start bei 0 sec? über zeitdatenpunkt?
|
|
# wie zip ich ID liste mit plot (für eine for schleife) zusammen? |