import matplotlib.pyplot as plt import os import glob import IPython import numpy as np from IPython import embed from scipy.optimize import curve_fit from jar_functions import parse_dataset from jar_functions import parse_infodataset from jar_functions import mean_loops from jar_functions import mean_noise_cut from jar_functions import norm_function from jar_functions import step_response #nicht: 19-aa, 22-ae, 22-ad (?) datasets = [#(os.path.join('D:\\jar_project\\JAR\\2020-06-19-aa\\beats-eod.dat')), #-5Hz delta f, horrible fit #(os.path.join('D:\\jar_project\\JAR\\2020-06-19-ab\\beats-eod.dat')), #-5Hz delta f, bad fit #(os.path.join('D:\\jar_project\\JAR\\2020-06-22-aa\\beats-eod.dat')), #-5Hz delta f, bad fit #(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ab\\beats-eod.dat')), #-5Hz delta f, bad fit (os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat')), #-15Hz delta f, good fit #(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ad\\beats-eod.dat')), #-15Hz delta f, horrible fit #(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ae\\beats-eod.dat')), #-15Hz delta f, maxfev way to high so horrible (os.path.join('D:\\jar_project\\JAR\\2020-06-22-af\\beats-eod.dat'))] #-15Hz delta f, good fit #np.array(sorted(glob.glob('D:\\jar_project\\JAR\\2020*\\beats-eod.dat'))) infodatasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\info.dat')), (os.path.join('D:\\jar_project\\JAR\\2020-06-22-af\\info.dat'))] time_all = [] freq_all = [] constant_factors = [] time_constants = [] ID = [] for infodataset in infodatasets: i = parse_infodataset(infodataset) identifier = i[0] ID.append(identifier) for dataset in datasets: #input of the function frequency, time, amplitude, eodf, deltaf, stimulusf, duration, pause = parse_dataset(dataset) dm = np.mean(duration) pm = np.mean(pause) timespan = dm + pm start = -10 stop = 200 mf , tnew = mean_loops(start, stop, timespan, frequency, time) #for i in range(len(mf)): cf, ct = mean_noise_cut(mf, tnew, n=1250) cf_arr = np.array(cf) ct_arr = np.array(ct) norm = norm_function(cf_arr, ct_arr, onset_point = dm - dm, offset_point = dm) #dm-dm funktioniert nur wenn onset = 0 sec freq_all.append(norm.tolist()) time_all.append(ct_arr) plt.plot(ct_arr, norm) #, label='fish=%s' % ID) sv, sc = curve_fit(step_response, ct_arr[ct_arr < dm], norm[ct_arr < dm], maxfev = 2000) #step_values and step_cov a = sv[:2] tau = np.array(sorted(sv[2:], reverse=False)) values = np.array([a, tau]) values_flat = values.flatten() plt.plot(ct_arr [ct_arr < 100], step_response(ct_arr, *sv)[ct_arr < 100], label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values_flat)) print('a1, a2, tau1, tau2', values_flat) constant_factors.append(a) time_constants.append(tau) fr = [] for j in freq_all: fr.append(freq_all[j]) embed() minimumf_all = min(len(freq_all[j])) f_all = freq_all[j][:minimumf_all] print(freq_all[0]) print(len((freq_all[j]))) #f_all_arr = np.array([f0_all], [f1_all]) #f_mean_all = np.mean(freq_all, axis = 0) #t_mean_all = np.mean(time_all, axis = 0) const_line = plt.axhline(y=0.632) plt.xlim([-10,220]) plt.xlabel('time [s]') plt.ylabel('rel. JAR magnitude') plt.title('relative JAR') plt.savefig('relative JAR') plt.legend(loc = 'lower right') plt.show() embed() # alle daten einlesen durch große for schleife (auch average über alle fische?) # für einzelne fische fit kontrollieren # Fragen: wie offset point wenn nicht start bei 0 sec? über zeitdatenpunkt? # wie zip ich ID liste mit plot (für eine for schleife) zusammen?