07.07
This commit is contained in:
parent
e91b648b5c
commit
85a4b51680
@ -13,6 +13,7 @@ def parse_dataset(dataset_name):
|
||||
deltafs = []
|
||||
stimulusfs = []
|
||||
duration = []
|
||||
pause = []
|
||||
|
||||
# data itself
|
||||
times = []
|
||||
@ -34,6 +35,8 @@ def parse_dataset(dataset_name):
|
||||
stimulusfs.append(float(l.split(':')[-1].strip()[:-2]))
|
||||
if "#" in l and "Duration" in l:
|
||||
duration.append(float(l.split(':')[-1].strip()[:-3]))
|
||||
if "#" in l and "Pause" in l:
|
||||
pause.append(float(l.split(':')[-1].strip()[:-3]))
|
||||
|
||||
if '#Key' in l:
|
||||
if len(time) != 0: #therefore empty in the first round
|
||||
@ -55,7 +58,7 @@ def parse_dataset(dataset_name):
|
||||
amplitudes.append(ampl) #these append the data from the first loop to the final lists, because we overwrite them (?)
|
||||
frequencies.append(freq)
|
||||
|
||||
return frequencies, times, amplitudes, eodfs, deltafs, stimulusfs, duration #output of the function
|
||||
return frequencies, times, amplitudes, eodfs, deltafs, stimulusfs, duration, pause #output of the function
|
||||
|
||||
def parse_infodataset(dataset_name):
|
||||
assert(os.path.exists(dataset_name)) #see if data exists
|
||||
@ -90,13 +93,11 @@ def mean_loops(start, stop, timespan, frequencies, time):
|
||||
def mean_noise_cut(frequencies, time, n):
|
||||
cutf = []
|
||||
cutt = []
|
||||
|
||||
for k in np.arange(0, len(frequencies), n):
|
||||
t = time[k]
|
||||
f = np.mean(frequencies[k:k+n])
|
||||
cutf.append(f)
|
||||
cutt.append(t)
|
||||
|
||||
return cutf, cutt
|
||||
|
||||
|
||||
@ -109,11 +110,11 @@ def norm_function(cf_arr, ct_arr, onset_point, offset_point):
|
||||
onset_end = onset_point - 10
|
||||
offset_start = offset_point - 10
|
||||
|
||||
base = np.mean(cf_arr[(ct_arr >= onset_end) & (ct_arr < onset_point)])
|
||||
base = np.median(cf_arr[(ct_arr >= onset_end) & (ct_arr < onset_point)])
|
||||
|
||||
ground = cf_arr - base
|
||||
|
||||
jar = np.mean(ground[(ct_arr >= offset_start) & (ct_arr < offset_point)])
|
||||
jar = np.median(ground[(ct_arr >= offset_start) & (ct_arr < offset_point)])
|
||||
|
||||
norm = ground / jar
|
||||
return norm
|
||||
@ -123,7 +124,7 @@ def base_eod(frequencies, time, onset_point):
|
||||
|
||||
onset_end = onset_point - 10
|
||||
|
||||
base = np.mean(frequencies[(time >= onset_end) & (time < onset_point)])
|
||||
base = np.median(frequencies[(time >= onset_end) & (time < onset_point)])
|
||||
base_eod.append(base)
|
||||
return base_eod
|
||||
|
||||
@ -133,7 +134,7 @@ def JAR_eod(frequencies, time, offset_point):
|
||||
|
||||
offset_start = offset_point - 10
|
||||
|
||||
jar = np.mean(frequencies[(time >= offset_start) & (time < offset_point)])
|
||||
jar = np.median(frequencies[(time >= offset_start) & (time < offset_point)])
|
||||
jar_eod.append(jar)
|
||||
|
||||
return jar_eod
|
||||
|
@ -12,53 +12,84 @@ from jar_functions import mean_noise_cut
|
||||
from jar_functions import norm_function
|
||||
from jar_functions import step_response
|
||||
|
||||
datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ab\\beats-eod.dat')),
|
||||
(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]
|
||||
infodatasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\info.dat'))]
|
||||
#nicht: 19-aa, 22-ae, 22-ad (?)
|
||||
datasets = [#(os.path.join('D:\\jar_project\\JAR\\2020-06-19-aa\\beats-eod.dat')), #-5Hz delta f, horrible fit
|
||||
#(os.path.join('D:\\jar_project\\JAR\\2020-06-19-ab\\beats-eod.dat')), #-5Hz delta f, bad fit
|
||||
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-aa\\beats-eod.dat')), #-5Hz delta f, bad fit
|
||||
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ab\\beats-eod.dat')), #-5Hz delta f, bad fit
|
||||
(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat')), #-15Hz delta f, good fit
|
||||
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ad\\beats-eod.dat')), #-15Hz delta f, horrible fit
|
||||
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ae\\beats-eod.dat')), #-15Hz delta f, maxfev way to high so horrible
|
||||
(os.path.join('D:\\jar_project\\JAR\\2020-06-22-af\\beats-eod.dat'))] #-15Hz delta f, good fit
|
||||
|
||||
#np.array(sorted(glob.glob('D:\\jar_project\\JAR\\2020*\\beats-eod.dat')))
|
||||
|
||||
time = []
|
||||
frequency_mean = []
|
||||
infodatasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\info.dat')),
|
||||
(os.path.join('D:\\jar_project\\JAR\\2020-06-22-af\\info.dat'))]
|
||||
|
||||
|
||||
time_all = []
|
||||
freq_all = []
|
||||
|
||||
constant_factors = []
|
||||
time_constants = []
|
||||
|
||||
start = -10
|
||||
stop = 200
|
||||
timespan = 210
|
||||
ID = []
|
||||
|
||||
for infodataset in infodatasets:
|
||||
i= parse_infodataset(infodataset)
|
||||
i = parse_infodataset(infodataset)
|
||||
identifier = i[0]
|
||||
ID.append(identifier)
|
||||
|
||||
|
||||
for dataset in datasets:
|
||||
#input of the function
|
||||
frequency, time, amplitude, eodf, deltaf, stimulusf, duration = parse_dataset(dataset)
|
||||
mf , tnew = mean_loops(start, stop, timespan, frequency, time)
|
||||
frequency, time, amplitude, eodf, deltaf, stimulusf, duration, pause = parse_dataset(dataset)
|
||||
dm = np.mean(duration)
|
||||
frequency_mean.append(mf)
|
||||
time.append(tnew)
|
||||
pm = np.mean(pause)
|
||||
timespan = dm + pm
|
||||
start = -10
|
||||
stop = 200
|
||||
mf , tnew = mean_loops(start, stop, timespan, frequency, time)
|
||||
|
||||
#for i in range(len(mf)):
|
||||
|
||||
for i in range(len(frequency_mean)):
|
||||
cf, ct = mean_noise_cut(frequency_mean[i], time[i], n=1000)
|
||||
cf, ct = mean_noise_cut(mf, tnew, n=1250)
|
||||
|
||||
cf_arr = np.array(cf)
|
||||
ct_arr = np.array(ct)
|
||||
|
||||
norm = norm_function(cf_arr, ct_arr, onset_point = dm - dm, offset_point = dm) #dm-dm funktioniert nur wenn onset = 0 sec
|
||||
|
||||
plt.plot(ct_arr, norm) #, label='n=%d' % n)
|
||||
freq_all.append(norm.tolist())
|
||||
time_all.append(ct_arr)
|
||||
|
||||
plt.plot(ct_arr, norm) #, label='fish=%s' % ID)
|
||||
|
||||
sv, sc = curve_fit(step_response, ct_arr[ct_arr < dm], norm[ct_arr < dm], maxfev = 2000) #step_values and step_cov
|
||||
|
||||
sv, sc = curve_fit(step_response, ct_arr[ct_arr < 100], norm[ct_arr < 100]) #step_values and step_cov
|
||||
a = sv[:2]
|
||||
tau = np.array(sorted(sv[2:], reverse=False))
|
||||
values = np.array([a, tau])
|
||||
values_flat = values.flatten()
|
||||
|
||||
plt.plot(ct_arr [ct_arr < 100], step_response(ct_arr, *sv)[ct_arr < 100], 'r-', label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values_flat))
|
||||
plt.plot(ct_arr [ct_arr < 100], step_response(ct_arr, *sv)[ct_arr < 100], label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values_flat))
|
||||
|
||||
print('a1, a2, tau1, tau2', values_flat)
|
||||
constant_factors.append(a)
|
||||
time_constants.append(tau)
|
||||
fr = []
|
||||
for j in freq_all:
|
||||
fr.append(freq_all[j])
|
||||
embed()
|
||||
minimumf_all = min(len(freq_all[j]))
|
||||
f_all = freq_all[j][:minimumf_all]
|
||||
print(freq_all[0])
|
||||
print(len((freq_all[j])))
|
||||
|
||||
#f_all_arr = np.array([f0_all], [f1_all])
|
||||
#f_mean_all = np.mean(freq_all, axis = 0)
|
||||
#t_mean_all = np.mean(time_all, axis = 0)
|
||||
|
||||
const_line = plt.axhline(y=0.632)
|
||||
plt.xlim([-10,220])
|
||||
@ -74,6 +105,5 @@ embed()
|
||||
# alle daten einlesen durch große for schleife (auch average über alle fische?)
|
||||
# für einzelne fische fit kontrollieren
|
||||
|
||||
#Fragen: wie offset point wenn nicht start bei 0 sec?
|
||||
#wie a1, tau1,.. ohne array? (funkt wegen dimensionen wenn ichs nochmal in liste appende)
|
||||
|
||||
# Fragen: wie offset point wenn nicht start bei 0 sec? über zeitdatenpunkt?
|
||||
# wie zip ich ID liste mit plot (für eine for schleife) zusammen?
|
Loading…
Reference in New Issue
Block a user