06.07
This commit is contained in:
parent
4022fff994
commit
e91b648b5c
@ -12,6 +12,7 @@ def parse_dataset(dataset_name):
|
||||
eodfs = []
|
||||
deltafs = []
|
||||
stimulusfs = []
|
||||
duration = []
|
||||
|
||||
# data itself
|
||||
times = []
|
||||
@ -31,6 +32,8 @@ def parse_dataset(dataset_name):
|
||||
deltafs.append(float(l.split(':')[-1].strip()[:-2])) #from that all expect the last two signs (Hz unit)
|
||||
if "#" in l and "StimulusFrequency" in l: #this for different metadata in different lists
|
||||
stimulusfs.append(float(l.split(':')[-1].strip()[:-2]))
|
||||
if "#" in l and "Duration" in l:
|
||||
duration.append(float(l.split(':')[-1].strip()[:-3]))
|
||||
|
||||
if '#Key' in l:
|
||||
if len(time) != 0: #therefore empty in the first round
|
||||
@ -52,12 +55,42 @@ def parse_dataset(dataset_name):
|
||||
amplitudes.append(ampl) #these append the data from the first loop to the final lists, because we overwrite them (?)
|
||||
frequencies.append(freq)
|
||||
|
||||
return times, frequencies, amplitudes, eodfs, deltafs, stimulusfs #output of the function
|
||||
return frequencies, times, amplitudes, eodfs, deltafs, stimulusfs, duration #output of the function
|
||||
|
||||
def parse_infodataset(dataset_name):
|
||||
assert(os.path.exists(dataset_name)) #see if data exists
|
||||
f = open(dataset_name, 'r') #open data we gave in
|
||||
lines = f.readlines() #read data
|
||||
f.close() #?
|
||||
|
||||
identifier = []
|
||||
for i in range(len(lines)):
|
||||
l = lines[i].strip() #all lines of textdata, exclude all empty lines (empty () default for spacebar)
|
||||
if "#" in l and "Identifier" in l:
|
||||
identifier.append((l.split(':')[-1].strip()[1:12]))
|
||||
return identifier
|
||||
|
||||
def mean_loops(start, stop, timespan, frequencies, time):
|
||||
minimumt = min(len(time[0]), len(time[1]))
|
||||
# new time with wished timespan because it varies for different loops
|
||||
tnew = np.arange(start, stop, timespan / minimumt) # 3rd input is stepspacing:
|
||||
# in case complete measuring time devided by total number of datapoints
|
||||
# interpolation
|
||||
f0 = np.interp(tnew, time[0], frequencies[0])
|
||||
f1 = np.interp(tnew, time[1], frequencies[1])
|
||||
|
||||
#new array with frequencies of both loops as two lists put together
|
||||
frequency = np.array([f0, f1])
|
||||
|
||||
#making a mean over both loops with the axis 0 (=averaged in y direction, axis=1 would be over x axis)
|
||||
mf = np.mean(frequency, axis=0)
|
||||
|
||||
return mf, tnew
|
||||
|
||||
def mean_noise_cut(frequencies, time, n):
|
||||
cutf = []
|
||||
cutt = []
|
||||
|
||||
for k in np.arange(0, len(frequencies), n):
|
||||
t = time[k]
|
||||
f = np.mean(frequencies[k:k+n])
|
||||
@ -72,6 +105,18 @@ def step_response(t, a1, a2, tau1, tau2):
|
||||
r_step[t<0] = 0
|
||||
return r_step
|
||||
|
||||
def norm_function(cf_arr, ct_arr, onset_point, offset_point):
|
||||
onset_end = onset_point - 10
|
||||
offset_start = offset_point - 10
|
||||
|
||||
base = np.mean(cf_arr[(ct_arr >= onset_end) & (ct_arr < onset_point)])
|
||||
|
||||
ground = cf_arr - base
|
||||
|
||||
jar = np.mean(ground[(ct_arr >= offset_start) & (ct_arr < offset_point)])
|
||||
|
||||
norm = ground / jar
|
||||
return norm
|
||||
|
||||
def base_eod(frequencies, time, onset_point):
|
||||
base_eod = []
|
||||
@ -94,32 +139,6 @@ def JAR_eod(frequencies, time, offset_point):
|
||||
return jar_eod
|
||||
|
||||
|
||||
def mean_loops(start, stop, timespan, frequencies, time):
|
||||
minimumt = min(len(time[0]), len(time[1]))
|
||||
# new time with wished timespan because it varies for different loops
|
||||
tnew = np.arange(start, stop, timespan / minimumt) # 3rd input is stepspacing:
|
||||
# in case complete measuring time devided by total number of datapoints
|
||||
# interpolation
|
||||
f0 = np.interp(tnew, time[0], frequencies[0])
|
||||
f1 = np.interp(tnew, time[1], frequencies[1])
|
||||
|
||||
#new array with frequencies of both loops as two lists put together
|
||||
frequency = np.array([f0, f1])
|
||||
|
||||
#making a mean over both loops with the axis 0 (=averaged in y direction, axis=1 would be over x axis)
|
||||
mf = np.mean(frequency, axis=0)
|
||||
return mf, tnew
|
||||
|
||||
|
||||
def norm_function(cf_arr, ct_arr, onset_point, offset_point):
|
||||
onset_end = onset_point - 10
|
||||
offset_start = offset_point - 10
|
||||
|
||||
base = np.mean(cf_arr[(ct_arr >= onset_end) & (ct_arr < onset_point)])
|
||||
|
||||
ground = cf_arr - base
|
||||
|
||||
jar = np.mean(cf_arr[(ct_arr >= offset_start) & (ct_arr < offset_point)])
|
||||
|
||||
norm = ground / jar
|
||||
return norm
|
@ -6,70 +6,74 @@ import numpy as np
|
||||
from IPython import embed
|
||||
from scipy.optimize import curve_fit
|
||||
from jar_functions import parse_dataset
|
||||
from jar_functions import mean_noise_cut
|
||||
from jar_functions import step_response
|
||||
from jar_functions import JAR_eod
|
||||
from jar_functions import base_eod
|
||||
from jar_functions import parse_infodataset
|
||||
from jar_functions import mean_loops
|
||||
from jar_functions import mean_noise_cut
|
||||
from jar_functions import norm_function
|
||||
from jar_functions import step_response
|
||||
|
||||
datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ab\\beats-eod.dat')),
|
||||
(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]
|
||||
infodatasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\info.dat'))]
|
||||
|
||||
datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]
|
||||
|
||||
eodf = []
|
||||
deltaf = []
|
||||
stimulusf = []
|
||||
|
||||
time = []
|
||||
frequency_mean= []
|
||||
amplitude = []
|
||||
frequency_mean = []
|
||||
|
||||
constant_factors = []
|
||||
time_constants = []
|
||||
|
||||
start = -10
|
||||
stop = 200
|
||||
timespan = 210
|
||||
for infodataset in infodatasets:
|
||||
i= parse_infodataset(infodataset)
|
||||
identifier = i[0]
|
||||
|
||||
for dataset in datasets:
|
||||
#input of the function
|
||||
t, f, a, e, d, s = parse_dataset(dataset)
|
||||
mf , tnew = mean_loops(start, stop, timespan, f, t)
|
||||
embed()
|
||||
frequency, time, amplitude, eodf, deltaf, stimulusf, duration = parse_dataset(dataset)
|
||||
mf , tnew = mean_loops(start, stop, timespan, frequency, time)
|
||||
dm = np.mean(duration)
|
||||
frequency_mean.append(mf)
|
||||
time.append(tnew)
|
||||
|
||||
for i in range(len(mf)):
|
||||
for n in [500, 1000, 1500]:
|
||||
cf, ct = mean_noise_cut(mf[i], time[i], n=n)
|
||||
for i in range(len(frequency_mean)):
|
||||
cf, ct = mean_noise_cut(frequency_mean[i], time[i], n=1000)
|
||||
|
||||
cf_arr = np.array(cf)
|
||||
ct_arr = np.array(ct)
|
||||
cf_arr = np.array(cf)
|
||||
ct_arr = np.array(ct)
|
||||
|
||||
norm = norm_function(cf_arr, ct_arr, onset_point = 0, offset_point = 100)
|
||||
norm = norm_function(cf_arr, ct_arr, onset_point = dm - dm, offset_point = dm) #dm-dm funktioniert nur wenn onset = 0 sec
|
||||
|
||||
plt.plot(ct_arr, norm, label='n=%d' % n)
|
||||
plt.plot(ct_arr, norm) #, label='n=%d' % n)
|
||||
|
||||
#r_step = step_response(t=ct_arr, a1=0.58, a2=0.47, tau1=11.7, tau2=60)
|
||||
sv, sc = curve_fit(step_response, ct_arr[ct_arr < 100], norm[ct_arr < 100]) #step_values and step_cov
|
||||
a = sv[:2]
|
||||
tau = np.array(sorted(sv[2:], reverse=False))
|
||||
values = np.array([a, tau])
|
||||
values_flat = values.flatten()
|
||||
|
||||
#plt.plot(ct_arr[ct_arr < 100], r_step[ct_arr < 100], label='fit: n=%d' % n)
|
||||
plt.plot(ct_arr [ct_arr < 100], step_response(ct_arr, *sv)[ct_arr < 100], 'r-', label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values_flat))
|
||||
|
||||
step_values, step_cov = curve_fit(step_response, ct_arr[ct_arr < 100], norm [ct_arr < 100])
|
||||
print('a1, a2, tau1, tau2', values_flat)
|
||||
constant_factors.append(a)
|
||||
time_constants.append(tau)
|
||||
|
||||
plt.plot(ct_arr [ct_arr < 100], step_response(ct_arr, *step_values)[ct_arr < 100], 'r-', label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(step_values))
|
||||
print(step_values)
|
||||
const_line = plt.axhline(y=0.632)
|
||||
|
||||
'plotting'
|
||||
plt.xlim([-10,220])
|
||||
#plt.ylim([400, 1000])
|
||||
plt.xlabel('time [s]')
|
||||
plt.ylabel('rel. JAR magnitude')
|
||||
#plt.title('fit_function(a1=0)')
|
||||
#plt.savefig('fit_function(a1=0)')
|
||||
plt.title('relative JAR')
|
||||
plt.savefig('relative JAR')
|
||||
plt.legend(loc = 'lower right')
|
||||
plt.show()
|
||||
embed()
|
||||
|
||||
# noch mehr in funktionen reinhauen (quasi nur noch plotting und funktionen einlesen)
|
||||
# zeitkonstanten nach groß und klein sortieren
|
||||
# onset dauer auslesen
|
||||
# ID aus info.dat auslesen
|
||||
|
||||
# alle daten einlesen durch große for schleife (auch average über alle fische?)
|
||||
# für einzelne fische fit kontrollieren
|
||||
|
||||
#Fragen: wie offset point wenn nicht start bei 0 sec?
|
||||
#wie a1, tau1,.. ohne array? (funkt wegen dimensionen wenn ichs nochmal in liste appende)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user