jar_project/sin_response_fit.py
2020-08-26 18:13:49 +02:00

167 lines
5.3 KiB
Python

from scipy import signal
import matplotlib.pyplot as plt
import numpy as np
import pylab
from IPython import embed
from scipy.optimize import curve_fit
from jar_functions import sin_response
from jar_functions import mean_noise_cut
def take_second(elem): # function for taking the names out of files
return elem[1]
identifier = ['2018lepto1',
'2018lepto4',
'2018lepto5',
'2018lepto76',
'2018lepto98',
'2019lepto03',
'2019lepto24',
'2019lepto27',
'2019lepto30',
'2020lepto04',
'2020lepto06',
'2020lepto16',
'2020lepto19',
'2020lepto20'
]
for ident in identifier:
predict = []
rootmeansquare = []
threshold = []
gain = []
mgain = []
phaseshift = []
mphaseshift = []
amfreq = []
amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1]
currf = None
idxlist = []
data = sorted(np.load('%s files.npy' %ident), key = take_second) # list with filenames in it
for i, d in enumerate(data):
dd = list(d)
jar = np.load('%s.npy' %dd) # load data for every file name
jm = jar - np.mean(jar) # low-pass filtering by subtracting mean
print(dd)
time = np.load('%s time.npy' %dd) # time file
dt = time[1] - time[0]
n = int(1/float(d[1])/dt)
cutf = mean_noise_cut(jm, time, n = n)
cutt = time
# plt.plot(time, jm-cutf, label='cut amfreq')
# plt.plot(time, jm, label='spec')
# plt.legend()
# plt.show()
sinv, sinc = curve_fit(sin_response, time, jm - cutf, [float(d[1]), 2, 0.5]) # fitting
print('frequency, phaseshift, amplitude:', sinv)
p = np.sqrt(sinv[1]**2)
A = np.sqrt(sinv[2] ** 2)
f = float(d[1])
phaseshift.append(p)
gain.append(A)
if f not in amfreq:
amfreq.append(f)
# root mean square
RMS = np.sqrt(np.mean(((jm - cutf) - sin_response(cutt, sinv[0], sinv[1], sinv[2]))**2))
thresh = A / np.sqrt(2)
# plt.plot(time, sin_response(time, *sinv), label='fit: f=%f, p=%.2f, A=%.2f' % tuple(sinv))
# plt.legend()
# plt.show()
# mean over same amfreqs for phase and gain
if currf is None or currf == d[1]:
currf = d[1]
idxlist.append(i)
else: # currf != f
meanf = [] # lists to make mean of
meanp = []
meanrms = []
meanthresh = []
for x in idxlist:
meanf.append(gain[x])
meanp.append(phaseshift[x])
meanrms.append(RMS)
meanthresh.append(thresh)
meanedf = np.mean(meanf)
meanedp = np.mean(meanp)
meanedrms = np.mean(meanrms)
meanedthresh = np.mean(meanthresh)
mgain.append(meanedf)
mphaseshift.append(meanedp)
rootmeansquare.append(meanedrms)
threshold.append(meanedthresh)
currf = d[1] # set back for next loop
idxlist = [i]
meanf = []
meanp = []
meanrms = []
meanthresh = []
for y in idxlist:
meanf.append(gain[y])
meanp.append(phaseshift[y])
meanrms.append(RMS)
meanthresh.append(thresh)
meanedf = np.mean(meanf)
meanedp = np.mean(meanp)
meanedrms = np.mean(meanrms)
meanedthresh = np.mean(meanthresh)
mgain.append(meanedf)
mphaseshift.append(meanedp)
rootmeansquare.append(meanedrms)
threshold.append(meanedthresh)
# predict of gain
for f in amf:
G = np.max(mgain) / np.sqrt(1 + (2*((np.pi*f*3.14)**2)))
predict.append(G)
fig = plt.figure()
ax0 = fig.add_subplot(2, 1, 1)
ax0.plot(amfreq, mgain(RMS<threshold), 'o')
#ax0.plot(amf, predict)
ax0.set_yscale('log')
ax0.set_xscale('log')
ax0.set_title('%s' % data[0][0])
ax0.set_ylabel('gain [Hz/(mV/cm)]')
ax0.set_xlabel('envelope_frequency [Hz]')
#plt.savefig('%s gain' % data[0][0])
ax1 = fig.add_subplot(2, 1, 2, sharex = ax0)
ax1.plot(amfreq, threshold, 'o-', label = 'threshold', color = 'b')
ax1.set_xscale('log')
ax1.plot(amfreq, rootmeansquare, 'o-', label = 'RMS', color = 'orange')
ax1.set_xscale('log')
ax1.set_xlabel('envelope_frequency [Hz]')
ax1.set_ylabel('RMS')
plt.legend()
pylab.show()
embed()
# zu eigenmannia: jeden fisch mit amplituden von max und min von modulationstiefe und evtl 1 oder 2 dazwischen
# und dann für die am frequenzen von apteronotus für 15Hz delta f messen
# mit zu hohem RMS rauskicken: gain/rms < ... (?)
# gain kurven als array abspeichern
# daten von natalie zu eigenmannia mit + / - delta f anschauen ob unterschiede
# unterschiedliche nffts auf anderem rechner laufen lassen evtl um unterschiede zu sehen?
# long term: extra datei mit script drin um fertige daten darzustellen, den code hier als datenverarbeitung allein verwenden
# darstellung: specgram --> rausgezogene jarspur darüber --> filterung --> fit und daten zusammen dargestellt, das ganze für verschiedene frequenzen
# liste mit eigenschaften der fische (dominanz/größe) und messvariablen (temp/conductivity) machen um diese plotten zu können
# phase in degree