from scipy import signal import matplotlib.pyplot as plt import numpy as np import pylab from IPython import embed from scipy.optimize import curve_fit from jar_functions import sin_response from jar_functions import mean_noise_cut def take_second(elem): # function for taking the names out of files return elem[1] identifier = ['2018lepto1', '2018lepto4', '2018lepto5', '2018lepto76', '2018lepto98', '2019lepto03', '2019lepto24', '2019lepto27', '2019lepto30', '2020lepto04', '2020lepto06', '2020lepto16', '2020lepto19', '2020lepto20' ] for ident in identifier: predict = [] rootmeansquare = [] threshold = [] gain = [] mgain = [] phaseshift = [] mphaseshift = [] amfreq = [] amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1] currf = None idxlist = [] data = sorted(np.load('%s files.npy' %ident), key = take_second) # list with filenames in it for i, d in enumerate(data): dd = list(d) jar = np.load('%s.npy' %dd) # load data for every file name jm = jar - np.mean(jar) # low-pass filtering by subtracting mean print(dd) time = np.load('%s time.npy' %dd) # time file dt = time[1] - time[0] n = int(1/float(d[1])/dt) cutf = mean_noise_cut(jm, time, n = n) cutt = time # plt.plot(time, jm-cutf, label='cut amfreq') # plt.plot(time, jm, label='spec') # plt.legend() # plt.show() sinv, sinc = curve_fit(sin_response, time, jm - cutf, [float(d[1]), 2, 0.5]) # fitting print('frequency, phaseshift, amplitude:', sinv) p = np.sqrt(sinv[1]**2) A = np.sqrt(sinv[2] ** 2) f = float(d[1]) phaseshift.append(p) gain.append(A) if f not in amfreq: amfreq.append(f) # root mean square RMS = np.sqrt(np.mean(((jm - cutf) - sin_response(cutt, sinv[0], sinv[1], sinv[2]))**2)) thresh = A / np.sqrt(2) # plt.plot(time, sin_response(time, *sinv), label='fit: f=%f, p=%.2f, A=%.2f' % tuple(sinv)) # plt.legend() # plt.show() # mean over same amfreqs for phase and gain if currf is None or currf == d[1]: currf = d[1] idxlist.append(i) else: # currf != f meanf = [] # lists to make mean of meanp = [] meanrms = [] meanthresh = [] for x in idxlist: meanf.append(gain[x]) meanp.append(phaseshift[x]) meanrms.append(RMS) meanthresh.append(thresh) meanedf = np.mean(meanf) meanedp = np.mean(meanp) meanedrms = np.mean(meanrms) meanedthresh = np.mean(meanthresh) mgain.append(meanedf) mphaseshift.append(meanedp) rootmeansquare.append(meanedrms) threshold.append(meanedthresh) currf = d[1] # set back for next loop idxlist = [i] meanf = [] meanp = [] meanrms = [] meanthresh = [] for y in idxlist: meanf.append(gain[y]) meanp.append(phaseshift[y]) meanrms.append(RMS) meanthresh.append(thresh) meanedf = np.mean(meanf) meanedp = np.mean(meanp) meanedrms = np.mean(meanrms) meanedthresh = np.mean(meanthresh) mgain.append(meanedf) mphaseshift.append(meanedp) rootmeansquare.append(meanedrms) threshold.append(meanedthresh) # predict of gain for f in amf: G = np.max(mgain) / np.sqrt(1 + (2*((np.pi*f*3.14)**2))) predict.append(G) fig = plt.figure() ax0 = fig.add_subplot(2, 1, 1) ax0.plot(amfreq, mgain(RMS rausgezogene jarspur darüber --> filterung --> fit und daten zusammen dargestellt, das ganze für verschiedene frequenzen # liste mit eigenschaften der fische (dominanz/größe) und messvariablen (temp/conductivity) machen um diese plotten zu können # phase in degree