26.08
This commit is contained in:
parent
4a58f1382f
commit
21d613222c
@ -107,8 +107,6 @@ def mean_noise_cut(frequencies, time, n):
|
||||
if k == 0:
|
||||
cutf[:kkk] = f
|
||||
cutf[kkk] = f
|
||||
#t = time[kk]
|
||||
#cutt[kkk] = t
|
||||
cutf[kkk:] = f
|
||||
return cutf
|
||||
|
||||
|
Binary file not shown.
Before Width: | Height: | Size: 308 KiB |
@ -10,118 +10,158 @@ from jar_functions import mean_noise_cut
|
||||
def take_second(elem): # function for taking the names out of files
|
||||
return elem[1]
|
||||
|
||||
predict = []
|
||||
|
||||
rootmeansquare = []
|
||||
threshold = []
|
||||
|
||||
gain = []
|
||||
mgain = []
|
||||
phaseshift = []
|
||||
mphaseshift = []
|
||||
amfreq = []
|
||||
amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1]
|
||||
|
||||
currf = None
|
||||
idxlist = []
|
||||
|
||||
identifier = '2020lepto06'
|
||||
|
||||
data = sorted(np.load('%s files.npy' %identifier), key = take_second) # list with filenames in it
|
||||
|
||||
for i, d in enumerate(data):
|
||||
dd = list(d)
|
||||
jar = np.load('%s.npy' %dd) # load data for every file name
|
||||
jm = jar - np.mean(jar) # low-pass filtering by subtracting mean
|
||||
print(dd)
|
||||
|
||||
time = np.load('%s time.npy' %dd) # time file
|
||||
dt = time[1] - time[0]
|
||||
|
||||
n = int(1/float(d[1])/dt)
|
||||
cutf = mean_noise_cut(jm, time, n = n)
|
||||
cutt = time
|
||||
plt.plot(time, jm-cutf, label='cut amfreq')
|
||||
plt.plot(time, jm, label='spec')
|
||||
#plt.legend()
|
||||
#plt.show()
|
||||
|
||||
b, a = signal.butter(4, (float(d[1])) / (0.5/dt), 'high', analog=True) # high pass filtering so our fit gets a bit better
|
||||
y = signal.filtfilt(b, a, jm)
|
||||
#plt.plot(time, y)
|
||||
#plt.plot(time, jm)
|
||||
|
||||
sinv, sinc = curve_fit(sin_response, time, y, [float(d[1]), 2, 0.5]) # fitting
|
||||
print('frequency, phaseshift, amplitude:', sinv)
|
||||
p = np.sqrt(sinv[1]**2)
|
||||
A = np.sqrt(sinv[2] ** 2)
|
||||
f = float(d[1])
|
||||
phaseshift.append(p)
|
||||
gain.append(A)
|
||||
amfreq.append(f)
|
||||
'''
|
||||
# root mean square
|
||||
RMS = np.sqrt(np.mean((cutf_arr - sin_response(cutt_arr, sinv[0], sinv[1], sinv[2]))**2))
|
||||
rootmeansquare.append(RMS)
|
||||
thresh = A / np.sqrt(2)
|
||||
threshold.append(thresh)
|
||||
'''
|
||||
plt.plot(time, sin_response(time, *sinv), label='fit: f=%f, p=%.2f, A=%.2f' % tuple(sinv))
|
||||
identifier = ['2018lepto1',
|
||||
'2018lepto4',
|
||||
'2018lepto5',
|
||||
'2018lepto76',
|
||||
'2018lepto98',
|
||||
'2019lepto03',
|
||||
'2019lepto24',
|
||||
'2019lepto27',
|
||||
'2019lepto30',
|
||||
'2020lepto04',
|
||||
'2020lepto06',
|
||||
'2020lepto16',
|
||||
'2020lepto19',
|
||||
'2020lepto20'
|
||||
]
|
||||
for ident in identifier:
|
||||
|
||||
predict = []
|
||||
|
||||
rootmeansquare = []
|
||||
threshold = []
|
||||
|
||||
gain = []
|
||||
mgain = []
|
||||
phaseshift = []
|
||||
mphaseshift = []
|
||||
amfreq = []
|
||||
amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1]
|
||||
|
||||
currf = None
|
||||
idxlist = []
|
||||
|
||||
data = sorted(np.load('%s files.npy' %ident), key = take_second) # list with filenames in it
|
||||
|
||||
for i, d in enumerate(data):
|
||||
dd = list(d)
|
||||
jar = np.load('%s.npy' %dd) # load data for every file name
|
||||
jm = jar - np.mean(jar) # low-pass filtering by subtracting mean
|
||||
print(dd)
|
||||
|
||||
time = np.load('%s time.npy' %dd) # time file
|
||||
dt = time[1] - time[0]
|
||||
|
||||
n = int(1/float(d[1])/dt)
|
||||
cutf = mean_noise_cut(jm, time, n = n)
|
||||
cutt = time
|
||||
# plt.plot(time, jm-cutf, label='cut amfreq')
|
||||
# plt.plot(time, jm, label='spec')
|
||||
# plt.legend()
|
||||
# plt.show()
|
||||
|
||||
sinv, sinc = curve_fit(sin_response, time, jm - cutf, [float(d[1]), 2, 0.5]) # fitting
|
||||
print('frequency, phaseshift, amplitude:', sinv)
|
||||
p = np.sqrt(sinv[1]**2)
|
||||
A = np.sqrt(sinv[2] ** 2)
|
||||
f = float(d[1])
|
||||
phaseshift.append(p)
|
||||
gain.append(A)
|
||||
if f not in amfreq:
|
||||
amfreq.append(f)
|
||||
|
||||
# root mean square
|
||||
RMS = np.sqrt(np.mean(((jm - cutf) - sin_response(cutt, sinv[0], sinv[1], sinv[2]))**2))
|
||||
|
||||
thresh = A / np.sqrt(2)
|
||||
|
||||
# plt.plot(time, sin_response(time, *sinv), label='fit: f=%f, p=%.2f, A=%.2f' % tuple(sinv))
|
||||
# plt.legend()
|
||||
# plt.show()
|
||||
|
||||
# mean over same amfreqs for phase and gain
|
||||
if currf is None or currf == d[1]:
|
||||
currf = d[1]
|
||||
idxlist.append(i)
|
||||
|
||||
else: # currf != f
|
||||
meanf = [] # lists to make mean of
|
||||
meanp = []
|
||||
meanrms = []
|
||||
meanthresh = []
|
||||
for x in idxlist:
|
||||
meanf.append(gain[x])
|
||||
meanp.append(phaseshift[x])
|
||||
meanrms.append(RMS)
|
||||
meanthresh.append(thresh)
|
||||
meanedf = np.mean(meanf)
|
||||
meanedp = np.mean(meanp)
|
||||
meanedrms = np.mean(meanrms)
|
||||
meanedthresh = np.mean(meanthresh)
|
||||
mgain.append(meanedf)
|
||||
mphaseshift.append(meanedp)
|
||||
rootmeansquare.append(meanedrms)
|
||||
threshold.append(meanedthresh)
|
||||
currf = d[1] # set back for next loop
|
||||
idxlist = [i]
|
||||
meanf = []
|
||||
meanp = []
|
||||
meanrms = []
|
||||
meanthresh = []
|
||||
for y in idxlist:
|
||||
meanf.append(gain[y])
|
||||
meanp.append(phaseshift[y])
|
||||
meanrms.append(RMS)
|
||||
meanthresh.append(thresh)
|
||||
meanedf = np.mean(meanf)
|
||||
meanedp = np.mean(meanp)
|
||||
meanedrms = np.mean(meanrms)
|
||||
meanedthresh = np.mean(meanthresh)
|
||||
mgain.append(meanedf)
|
||||
mphaseshift.append(meanedp)
|
||||
rootmeansquare.append(meanedrms)
|
||||
threshold.append(meanedthresh)
|
||||
|
||||
# predict of gain
|
||||
for f in amf:
|
||||
G = np.max(mgain) / np.sqrt(1 + (2*((np.pi*f*3.14)**2)))
|
||||
predict.append(G)
|
||||
|
||||
fig = plt.figure()
|
||||
ax0 = fig.add_subplot(2, 1, 1)
|
||||
ax0.plot(amfreq, mgain(RMS<threshold), 'o')
|
||||
#ax0.plot(amf, predict)
|
||||
ax0.set_yscale('log')
|
||||
ax0.set_xscale('log')
|
||||
ax0.set_title('%s' % data[0][0])
|
||||
ax0.set_ylabel('gain [Hz/(mV/cm)]')
|
||||
ax0.set_xlabel('envelope_frequency [Hz]')
|
||||
#plt.savefig('%s gain' % data[0][0])
|
||||
|
||||
ax1 = fig.add_subplot(2, 1, 2, sharex = ax0)
|
||||
ax1.plot(amfreq, threshold, 'o-', label = 'threshold', color = 'b')
|
||||
ax1.set_xscale('log')
|
||||
ax1.plot(amfreq, rootmeansquare, 'o-', label = 'RMS', color = 'orange')
|
||||
ax1.set_xscale('log')
|
||||
ax1.set_xlabel('envelope_frequency [Hz]')
|
||||
ax1.set_ylabel('RMS')
|
||||
plt.legend()
|
||||
plt.show()
|
||||
# mean over same amfreqs for phase and gain
|
||||
if currf is None or currf == d[1]:
|
||||
currf = d[1]
|
||||
idxlist.append(i)
|
||||
|
||||
else: # currf != f
|
||||
meanf = [] # lists to make mean of
|
||||
meanp = []
|
||||
for x in idxlist:
|
||||
meanf.append(gain[x])
|
||||
meanp.append(phaseshift[x])
|
||||
meanedf = np.mean(meanf)
|
||||
meanedp = np.mean(meanp)
|
||||
mgain.append(meanedf)
|
||||
mphaseshift.append(meanedp)
|
||||
currf = d[1] # set back for next loop
|
||||
idxlist = [i]
|
||||
meanf = []
|
||||
meanp = []
|
||||
for y in idxlist:
|
||||
meanf.append(gain[y])
|
||||
meanp.append(phaseshift[y])
|
||||
meanedf = np.mean(meanf)
|
||||
meanedp = np.mean(meanp)
|
||||
mgain.append(meanedf)
|
||||
mphaseshift.append(meanedp)
|
||||
|
||||
# predict of gain
|
||||
for f in amf:
|
||||
G = np.max(mgain) / np.sqrt(1 + (2*((np.pi*f*3.14)**2)))
|
||||
predict.append(G)
|
||||
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot(1, 1, 1)
|
||||
ax.plot(amf, mgain, 'o')
|
||||
#ax.plot(amf, predict)
|
||||
ax.set_yscale('log')
|
||||
ax.set_xscale('log')
|
||||
ax.set_title('%s' % data[0][0])
|
||||
ax.set_ylabel('gain [Hz/(mV/cm)]')
|
||||
ax.set_xlabel('envelope_frequency [Hz]')
|
||||
#plt.savefig('%s gain' % data[0][0])
|
||||
pylab.show()
|
||||
|
||||
plt.plot(threshold, label = 'threshold')
|
||||
plt.plot(rootmeansquare, label = 'RMS')
|
||||
plt.legend()
|
||||
plt.show()
|
||||
pylab.show()
|
||||
|
||||
embed()
|
||||
|
||||
# phase in degree
|
||||
# Q10 / conductivity
|
||||
# AM-frequency / envelope-frequency scale title?
|
||||
# zu eigenmannia: jeden fisch mit amplituden von max und min von modulationstiefe und evtl 1 oder 2 dazwischen
|
||||
# und dann für die am frequenzen von apteronotus für 15Hz delta f messen
|
||||
|
||||
# einfach passendes n verwenden um AM-beats rauszufiltern? ...Menge Datenpunkte zu gering
|
||||
# mit zu hohem RMS rauskicken: gain/rms < ... (?)
|
||||
# gain kurven als array abspeichern
|
||||
# daten von natalie zu eigenmannia mit + / - delta f anschauen ob unterschiede
|
||||
# unterschiedliche nffts auf anderem rechner laufen lassen evtl um unterschiede zu sehen?
|
||||
|
||||
|
||||
# long term: extra datei mit script drin um fertige daten darzustellen, den code hier als datenverarbeitung allein verwenden
|
||||
# darstellung: specgram --> rausgezogene jarspur darüber --> filterung --> fit und daten zusammen dargestellt, das ganze für verschiedene frequenzen
|
||||
# liste mit eigenschaften der fische (dominanz/größe) und messvariablen (temp/conductivity) machen um diese plotten zu können
|
||||
|
||||
# phase in degree
|
@ -21,18 +21,7 @@ from jar_functions import average
|
||||
from jar_functions import import_data
|
||||
from jar_functions import import_amfreq
|
||||
|
||||
base_path = 'D:\\jar_project\\JAR\\sin\\2020lepto04'
|
||||
|
||||
datasets = ['2020-07-22-ab',
|
||||
'2020-07-22-ac',
|
||||
'2020-07-22-ad',
|
||||
'2020-07-22-ae',
|
||||
'2020-07-22-af',
|
||||
'2020-07-22-ag',
|
||||
'2020-07-23-ab',
|
||||
'2020-07-23-ac',
|
||||
'2020-07-23-ad',
|
||||
'2020-07-23-ae']
|
||||
base_path = 'D:\\jar_project\\JAR\\sin\\2019lepto03'
|
||||
|
||||
time_all = []
|
||||
freq_all = []
|
||||
@ -41,26 +30,28 @@ amfrequencies = []
|
||||
gains = []
|
||||
files = []
|
||||
|
||||
ID = []
|
||||
|
||||
for idx, dataset in enumerate(datasets):
|
||||
for idx, dataset in enumerate(os.listdir(base_path)):
|
||||
if dataset == 'prerecordings':
|
||||
continue
|
||||
datapath = os.path.join(base_path, dataset, '%s.nix' % dataset)
|
||||
print(datapath)
|
||||
|
||||
data, pre_data, dt = import_data(datapath)
|
||||
|
||||
nfft = 2**17
|
||||
|
||||
for d, dat in enumerate(data):
|
||||
file_name = []
|
||||
if len(dat) == 1:
|
||||
continue
|
||||
|
||||
for infodataset in datasets:
|
||||
infodataset = os.path.join(base_path, infodataset, 'info.dat')
|
||||
file_name = []
|
||||
ID = []
|
||||
|
||||
i = parse_infodataset(infodataset)
|
||||
identifier = i[0]
|
||||
if not identifier[1:-2] in ID:
|
||||
ID.append(identifier[1:-1])
|
||||
# identifier for file_name
|
||||
infodatapath = os.path.join(base_path, dataset, 'info.dat')
|
||||
i = parse_infodataset(infodatapath)
|
||||
identifier = i[0]
|
||||
if not identifier[1:-2] in ID:
|
||||
ID.append(identifier[1:-1])
|
||||
|
||||
# file_name
|
||||
file_name.append(ID[0])
|
||||
@ -109,6 +100,8 @@ for idx, dataset in enumerate(datasets):
|
||||
|
||||
# save filenames for this fish
|
||||
np.save('%s files' %ID[0], files)
|
||||
print(ID)
|
||||
embed()
|
||||
|
||||
# running average over on AM-period?
|
||||
# running average over on AM-period?
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user