20.08
This commit is contained in:
parent
352545004f
commit
4a58f1382f
@ -99,14 +99,18 @@ def mean_traces(start, stop, timespan, frequencies, time):
|
||||
return mf, tnew
|
||||
|
||||
def mean_noise_cut(frequencies, time, n):
|
||||
cutf = []
|
||||
cutt = []
|
||||
for k in np.arange(0, len(frequencies), n):
|
||||
f = np.mean(frequencies[k:k+n])
|
||||
t = time[k]
|
||||
cutf.append(f)
|
||||
cutt.append(t)
|
||||
return cutf, cutt
|
||||
cutf = np.zeros(len(frequencies))
|
||||
for k in range(0, len(frequencies) - n):
|
||||
kk = int(k)
|
||||
f = np.mean(frequencies[kk:kk+n])
|
||||
kkk = int(kk+n/2)
|
||||
if k == 0:
|
||||
cutf[:kkk] = f
|
||||
cutf[kkk] = f
|
||||
#t = time[kk]
|
||||
#cutt[kkk] = t
|
||||
cutf[kkk:] = f
|
||||
return cutf
|
||||
|
||||
def norm_function(f, t, onset_point, offset_point):
|
||||
onset_end = onset_point - 10
|
||||
|
@ -25,7 +25,9 @@ amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1]
|
||||
currf = None
|
||||
idxlist = []
|
||||
|
||||
data = sorted(np.load('files.npy'), key = take_second) # list with filenames in it
|
||||
identifier = '2020lepto06'
|
||||
|
||||
data = sorted(np.load('%s files.npy' %identifier), key = take_second) # list with filenames in it
|
||||
|
||||
for i, d in enumerate(data):
|
||||
dd = list(d)
|
||||
@ -34,41 +36,40 @@ for i, d in enumerate(data):
|
||||
print(dd)
|
||||
|
||||
time = np.load('%s time.npy' %dd) # time file
|
||||
for float(d[1]) = 0.001: #ähnlich wie das, einfach passenstens n verwenden?
|
||||
n = int((len(jar) / time[-1]) * (1 / 15))
|
||||
print(n)
|
||||
cutf, cutt = mean_noise_cut(jar, time, n = 2)
|
||||
plt.plot(cutt, cutf, label='cut amfreq')
|
||||
plt.plot(time, jar, label='spec')
|
||||
plt.legend()
|
||||
plt.show()
|
||||
#embed()
|
||||
dt = time[1] - time[0]
|
||||
|
||||
n = int(1/float(d[1])/dt)
|
||||
cutf = mean_noise_cut(jm, time, n = n)
|
||||
cutt = time
|
||||
plt.plot(time, jm-cutf, label='cut amfreq')
|
||||
plt.plot(time, jm, label='spec')
|
||||
#plt.legend()
|
||||
#plt.show()
|
||||
|
||||
b, a = signal.butter(4, (float(d[1]) / 2) / 10000, 'high', analog=True) # high pass filtering so our fit gets a bit better
|
||||
b, a = signal.butter(4, (float(d[1])) / (0.5/dt), 'high', analog=True) # high pass filtering so our fit gets a bit better
|
||||
y = signal.filtfilt(b, a, jm)
|
||||
#plt.plot(time, y)
|
||||
#plt.plot(time, jar)
|
||||
#plt.plot(time, jm)
|
||||
|
||||
sinv, sinc = curve_fit(sin_response, time, y, [float(d[1]), 2, 0.5]) # fitting
|
||||
print('frequency, phaseshift, amplitude:', sinv)
|
||||
plt.show()
|
||||
p = np.sqrt(sinv[1]**2)
|
||||
A = np.sqrt(sinv[2] ** 2)
|
||||
f = float(d[1])
|
||||
phaseshift.append(p)
|
||||
gain.append(A)
|
||||
amfreq.append(f)
|
||||
|
||||
'''
|
||||
# root mean square
|
||||
|
||||
RMS = np.sqrt(np.mean((jm - sin_response(time, sinv[0], sinv[1], sinv[2]))**2))
|
||||
RMS = np.sqrt(np.mean((cutf_arr - sin_response(cutt_arr, sinv[0], sinv[1], sinv[2]))**2))
|
||||
rootmeansquare.append(RMS)
|
||||
thresh = A / np.sqrt(2)
|
||||
threshold.append(thresh)
|
||||
|
||||
#plt.plot(time, sin_response(time, *sinv), label='fit: f=%f, p=%.2f, A=%.2f' % tuple(sinv))
|
||||
|
||||
#mean over same amfreqs for phase and gain
|
||||
'''
|
||||
plt.plot(time, sin_response(time, *sinv), label='fit: f=%f, p=%.2f, A=%.2f' % tuple(sinv))
|
||||
plt.legend()
|
||||
plt.show()
|
||||
# mean over same amfreqs for phase and gain
|
||||
if currf is None or currf == d[1]:
|
||||
currf = d[1]
|
||||
idxlist.append(i)
|
||||
@ -85,7 +86,6 @@ for i, d in enumerate(data):
|
||||
mphaseshift.append(meanedp)
|
||||
currf = d[1] # set back for next loop
|
||||
idxlist = [i]
|
||||
|
||||
meanf = []
|
||||
meanp = []
|
||||
for y in idxlist:
|
||||
@ -101,8 +101,6 @@ for f in amf:
|
||||
G = np.max(mgain) / np.sqrt(1 + (2*((np.pi*f*3.14)**2)))
|
||||
predict.append(G)
|
||||
|
||||
|
||||
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot(1, 1, 1)
|
||||
ax.plot(amf, mgain, 'o')
|
||||
@ -111,19 +109,19 @@ ax.set_yscale('log')
|
||||
ax.set_xscale('log')
|
||||
ax.set_title('%s' % data[0][0])
|
||||
ax.set_ylabel('gain [Hz/(mV/cm)]')
|
||||
ax.set_xlabel('AM-frequency [Hz]')
|
||||
ax.set_xlabel('envelope_frequency [Hz]')
|
||||
#plt.savefig('%s gain' % data[0][0])
|
||||
pylab.show()
|
||||
|
||||
plt.plot(threshold, label = 'threshold')
|
||||
plt.plot(rootmeansquare, label = 'RMS')
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
embed()
|
||||
|
||||
#phase in degree
|
||||
# phase in degree
|
||||
# Q10 / conductivity
|
||||
# AM-frequency / envelope-frequency scale title?
|
||||
|
||||
# bevor fit noch filtern mit 15Hz damit AM-Modulation rausgefiltert wird und nur noch envelope übrig bleibt.
|
||||
# Dazu running average mit n wobei n über samplingrate von spectogram und delta f bestimmt wird
|
||||
# samplingrate über overlap muss dabei aber größer sein als samplingrate die noch übrig bleibt wenn ich mit delta f frequency gefiltert hab
|
||||
# einfach passendes n verwenden um AM-beats rauszufiltern? ...Menge Datenpunkte zu gering
|
||||
|
@ -21,18 +21,18 @@ from jar_functions import average
|
||||
from jar_functions import import_data
|
||||
from jar_functions import import_amfreq
|
||||
|
||||
base_path = 'D:\\jar_project\\JAR\\sin\\2020lepto16'
|
||||
|
||||
datasets = ['2020-08-04-ab',
|
||||
'2020-08-04-ac',
|
||||
'2020-08-04-ad',
|
||||
'2020-08-04-ae',
|
||||
'2020-08-04-af',
|
||||
'2020-08-05-ab',
|
||||
'2020-08-05-ac',
|
||||
'2020-08-05-ad',
|
||||
'2020-08-05-ae',
|
||||
'2020-08-05-af']
|
||||
base_path = 'D:\\jar_project\\JAR\\sin\\2020lepto04'
|
||||
|
||||
datasets = ['2020-07-22-ab',
|
||||
'2020-07-22-ac',
|
||||
'2020-07-22-ad',
|
||||
'2020-07-22-ae',
|
||||
'2020-07-22-af',
|
||||
'2020-07-22-ag',
|
||||
'2020-07-23-ab',
|
||||
'2020-07-23-ac',
|
||||
'2020-07-23-ad',
|
||||
'2020-07-23-ae']
|
||||
|
||||
time_all = []
|
||||
freq_all = []
|
||||
@ -41,11 +41,7 @@ amfrequencies = []
|
||||
gains = []
|
||||
files = []
|
||||
|
||||
|
||||
ID = []
|
||||
col = ['dimgrey', 'grey', 'darkgrey', 'silver', 'lightgrey', 'gainsboro', 'whitesmoke']
|
||||
labels = zip(ID, datasets)
|
||||
|
||||
|
||||
for idx, dataset in enumerate(datasets):
|
||||
datapath = os.path.join(base_path, dataset, '%s.nix' % dataset)
|
||||
@ -53,13 +49,11 @@ for idx, dataset in enumerate(datasets):
|
||||
|
||||
data, pre_data, dt = import_data(datapath)
|
||||
|
||||
|
||||
nfft = 2**17
|
||||
|
||||
for d, dat in enumerate(data):
|
||||
file_name = []
|
||||
|
||||
|
||||
for infodataset in datasets:
|
||||
infodataset = os.path.join(base_path, infodataset, 'info.dat')
|
||||
|
||||
@ -67,6 +61,8 @@ for idx, dataset in enumerate(datasets):
|
||||
identifier = i[0]
|
||||
if not identifier[1:-2] in ID:
|
||||
ID.append(identifier[1:-1])
|
||||
|
||||
# file_name
|
||||
file_name.append(ID[0])
|
||||
|
||||
amfreq = import_amfreq(datapath)
|
||||
@ -75,10 +71,12 @@ for idx, dataset in enumerate(datasets):
|
||||
|
||||
file_name.append(str(d))
|
||||
files.append(file_name)
|
||||
|
||||
# spectogram
|
||||
if float(amfreq) < 0.01:
|
||||
spec, freqs, times = specgram(dat, Fs=1/dt, detrend='mean', NFFT=nfft, noverlap=nfft * 0.8)
|
||||
else:
|
||||
spec, freqs, times = specgram(dat, Fs=1 / dt, detrend='mean', NFFT=nfft, noverlap=nfft * 0.96)
|
||||
spec, freqs, times = specgram(dat, Fs=1/dt, detrend='mean', NFFT=nfft, noverlap=nfft * 0.95)
|
||||
|
||||
dbspec = 10.0*np.log10(spec) # in dB
|
||||
power = dbspec[:, 50]
|
||||
@ -93,7 +91,6 @@ for idx, dataset in enumerate(datasets):
|
||||
lim0 = eodf4-10
|
||||
lim1 = eodf4+15
|
||||
|
||||
# control of plt.imshow
|
||||
df = freqs[1] - freqs[0]
|
||||
ix0 = int(np.floor(lim0/df)) # back to index
|
||||
ix1 = int(np.ceil(lim1/df)) # back to index
|
||||
@ -102,14 +99,16 @@ for idx, dataset in enumerate(datasets):
|
||||
jar4 = freq4[np.argmax(spec4, axis=0)] # all freqs at max specs over axis 0
|
||||
jar = jar4 / 4
|
||||
jm = jar4 - np.mean(jar4) # data we take
|
||||
|
||||
cut_times = times[:len(jar4)]
|
||||
|
||||
# plt.imshow(spec4, cmap='jet', origin='lower', extent=(times[0], times[-1], lim0, lim1), aspect='auto', vmin=-80, vmax=-10)
|
||||
|
||||
# save data
|
||||
np.save('%s time' % file_name, cut_times)
|
||||
np.save('%s' % file_name, jar4)
|
||||
|
||||
#plt.imshow(spec4, cmap='jet', origin='lower', extent=(times[0], times[-1], lim0, lim1), aspect='auto', vmin=-80, vmax=-10)
|
||||
|
||||
np.save('files.npy', files)
|
||||
#embed()
|
||||
# save filenames for this fish
|
||||
np.save('%s files' %ID[0], files)
|
||||
embed()
|
||||
|
||||
# running average over on AM-period?
|
Loading…
Reference in New Issue
Block a user