02.09
This commit is contained in:
parent
21d613222c
commit
fb14104325
70
eigenmannia_jar.py
Normal file
70
eigenmannia_jar.py
Normal file
@ -0,0 +1,70 @@
|
|||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
import nix_helpers as nh
|
||||||
|
from IPython import embed
|
||||||
|
#from tqdm import tqdm
|
||||||
|
from jar_functions import parse_stimuli_dat
|
||||||
|
from jar_functions import norm_function_eigen
|
||||||
|
from jar_functions import mean_noise_cut_eigen
|
||||||
|
from jar_functions import get_time_zeros
|
||||||
|
|
||||||
|
base_path = 'D:\\jar_project\\JAR\\eigenmannia\\2015eigen16'
|
||||||
|
|
||||||
|
datasets = ['2020-07-08-aa', '2020-07-08-as']
|
||||||
|
|
||||||
|
response = []
|
||||||
|
deltaf = []
|
||||||
|
|
||||||
|
for dataset in os.listdir(base_path):
|
||||||
|
datapath = os.path.join(base_path, dataset, '%s.nix' % dataset)
|
||||||
|
print(datapath)
|
||||||
|
stimuli_dat = os.path.join(base_path, dataset, 'manualjar-eod.dat')
|
||||||
|
|
||||||
|
df, duration = parse_stimuli_dat(stimuli_dat)
|
||||||
|
dur = int(duration[0][0:2])
|
||||||
|
print(df)
|
||||||
|
|
||||||
|
time, eod = nh.read_eod(datapath, duration = 2000)
|
||||||
|
|
||||||
|
zeropoints = get_time_zeros(time, eod, threshold = np.max(eod)*0.1)
|
||||||
|
|
||||||
|
frequencies = 1 / np.diff(zeropoints)
|
||||||
|
|
||||||
|
# norm, base, jar = norm_function_eigen(frequencies, zeropoints[:-1], onset_point=(dur - dur)+10, offset_point=dur+10) # dm-dm funktioniert nur wenn onset = 0 sec
|
||||||
|
|
||||||
|
# cf, ct = mean_noise_cut_eigen(frequencies, zeropoints[:-1], n=200)
|
||||||
|
|
||||||
|
window = np.ones(101) / 101
|
||||||
|
freq = np.convolve(frequencies, window, mode='same')
|
||||||
|
|
||||||
|
''' # plt.plot(ct, cf)
|
||||||
|
plt.plot(zeropoints[:-1], freq)
|
||||||
|
plt.ylabel('EOD_frequency [Hz]')
|
||||||
|
plt.xlabel('time [s]')
|
||||||
|
plt.xlim(1, 140)
|
||||||
|
plt.ylim(np.median(freq) - 10, np.median(freq) + 10)
|
||||||
|
plt.title('JAR_deltaf_%s' % deltaf)
|
||||||
|
plt.show()
|
||||||
|
'''
|
||||||
|
j = []
|
||||||
|
for idx, i in enumerate(zeropoints):
|
||||||
|
if i > 20 and i < 80:
|
||||||
|
j.append(freq[idx])
|
||||||
|
|
||||||
|
b = []
|
||||||
|
for idx, i in enumerate(zeropoints):
|
||||||
|
if i < 20:
|
||||||
|
b.append(freq[idx])
|
||||||
|
|
||||||
|
r = np.median(j) - np.median(b)
|
||||||
|
response.append(r)
|
||||||
|
deltaf.append(df[0])
|
||||||
|
|
||||||
|
res_df1 = sorted(zip(deltaf[:32],response[:32]))
|
||||||
|
res_df2 = sorted(zip(deltaf[33:],response[33:]))
|
||||||
|
res_df = sorted(zip(deltaf,response))
|
||||||
|
|
||||||
|
np.save('res_df1', res_df1)
|
||||||
|
np.save('res_df2', res_df2)
|
||||||
|
np.save('res_df', res_df)
|
@ -84,6 +84,25 @@ def parse_infodataset(dataset_name):
|
|||||||
identifier.append((l.split(':')[-1].strip()))
|
identifier.append((l.split(':')[-1].strip()))
|
||||||
return identifier
|
return identifier
|
||||||
|
|
||||||
|
def parse_stimuli_dat(dataset_name):
|
||||||
|
assert (os.path.exists(dataset_name)) # see if data exists
|
||||||
|
f = open(dataset_name, 'r') # open data we gave in
|
||||||
|
lines = f.readlines() # read data
|
||||||
|
f.close() # ?
|
||||||
|
|
||||||
|
deltaf = []
|
||||||
|
duration = []
|
||||||
|
|
||||||
|
for i in range(len(lines)):
|
||||||
|
l = lines[i].strip() # all lines of textdata, exclude all empty lines (empty () default for spacebar)
|
||||||
|
if "#" in l and "Delta f" in l:
|
||||||
|
ll = (l.split(':')[-1].strip())
|
||||||
|
deltaf.append(float(ll.split('.')[0]))
|
||||||
|
if '#' in l and 'duration' in l:
|
||||||
|
duration.append((l.split(':')[-1].strip()))
|
||||||
|
|
||||||
|
return deltaf, duration
|
||||||
|
|
||||||
def mean_traces(start, stop, timespan, frequencies, time):
|
def mean_traces(start, stop, timespan, frequencies, time):
|
||||||
minimumt = min([len(time[k]) for k in range(len(time))])
|
minimumt = min([len(time[k]) for k in range(len(time))])
|
||||||
|
|
||||||
@ -98,7 +117,17 @@ def mean_traces(start, stop, timespan, frequencies, time):
|
|||||||
mf = np.mean(frequency, axis=0)
|
mf = np.mean(frequency, axis=0)
|
||||||
return mf, tnew
|
return mf, tnew
|
||||||
|
|
||||||
def mean_noise_cut(frequencies, time, n):
|
def mean_noise_cut_eigen(frequencies, time, n):
|
||||||
|
cutf = []
|
||||||
|
cutt = []
|
||||||
|
for k in np.arange(0, len(frequencies), n):
|
||||||
|
t = time[k]
|
||||||
|
f = np.mean(frequencies[k:k+n])
|
||||||
|
cutf.append(f)
|
||||||
|
cutt.append(t)
|
||||||
|
return cutf, cutt
|
||||||
|
|
||||||
|
def mean_noise_cut(frequencies, n):
|
||||||
cutf = np.zeros(len(frequencies))
|
cutf = np.zeros(len(frequencies))
|
||||||
for k in range(0, len(frequencies) - n):
|
for k in range(0, len(frequencies) - n):
|
||||||
kk = int(k)
|
kk = int(k)
|
||||||
@ -125,6 +154,20 @@ def norm_function(f, t, onset_point, offset_point):
|
|||||||
normed = ground / jar
|
normed = ground / jar
|
||||||
norm.append(normed)
|
norm.append(normed)
|
||||||
|
|
||||||
|
return norm, base, jar
|
||||||
|
|
||||||
|
def norm_function_eigen(f, t, onset_point, offset_point):
|
||||||
|
onset_end = onset_point - 10
|
||||||
|
offset_start = offset_point - 10
|
||||||
|
|
||||||
|
|
||||||
|
base = np.median(f[(t >= onset_end) & (t < onset_point)])
|
||||||
|
|
||||||
|
ground = f - base
|
||||||
|
|
||||||
|
jar = np.median(ground[(t >= offset_start) & (t < offset_point)])
|
||||||
|
|
||||||
|
norm = ground / jar
|
||||||
return norm
|
return norm
|
||||||
|
|
||||||
def base_eod(frequencies, time, onset_point):
|
def base_eod(frequencies, time, onset_point):
|
||||||
@ -147,6 +190,34 @@ def JAR_eod(frequencies, time, offset_point):
|
|||||||
|
|
||||||
return jar_eod
|
return jar_eod
|
||||||
|
|
||||||
|
|
||||||
|
def get_time_zeros (time, ampl, threshold = 0.0):
|
||||||
|
|
||||||
|
"""
|
||||||
|
Ermittelt die Zeitpunkte der Nullpunkte der EOD-Kurve
|
||||||
|
param time: Zeitachse der Datei
|
||||||
|
param eod: EOD-Kurve aus Datei
|
||||||
|
return zeropoints: Liste mit Nullpunkten der EOD-Kurve
|
||||||
|
"""
|
||||||
|
#Xavers gedöns
|
||||||
|
new_time = time[:-1]
|
||||||
|
if len(new_time) != (len(ampl[:-1]) | len(ampl[1:])):
|
||||||
|
new_time = time [:-2]
|
||||||
|
zeropoints = new_time[(ampl[:-1] >= threshold) & (ampl[1:] < threshold)]
|
||||||
|
dx = np.mean(np.diff(new_time))
|
||||||
|
|
||||||
|
for index in range(len(zeropoints)): # Daten glätten
|
||||||
|
zeit_index = int(zeropoints[index] / dx)
|
||||||
|
if ampl[zeit_index] < threshold:
|
||||||
|
dy = ampl[zeit_index + 1] - ampl[zeit_index]
|
||||||
|
else:
|
||||||
|
dy = ampl[zeit_index] - ampl[zeit_index - 1]
|
||||||
|
m = (dy / dx)
|
||||||
|
x = (threshold - ampl[zeit_index]) / m
|
||||||
|
zeropoints[index] += x
|
||||||
|
return zeropoints
|
||||||
|
|
||||||
|
|
||||||
def sort_values(values):
|
def sort_values(values):
|
||||||
a = values[:2]
|
a = values[:2]
|
||||||
tau = np.array(sorted(values[2:], reverse=False))
|
tau = np.array(sorted(values[2:], reverse=False))
|
||||||
|
13
notes
Normal file
13
notes
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
- mit zu hohem RMS rauskicken: evtl nur ein trace rauskicken wenn nur da RMS zu hoch
|
||||||
|
- 2019lepto27/30 nochmal anschauen, gainpunkt fehlt
|
||||||
|
- fit für gain kurven: über tau = 1/cutoff_f * 2 * pi --> wie bestimm ich cutoff_f?
|
||||||
|
- daten von natalie zu eigenmannia mit + / - delta f anschauen ob unterschiede
|
||||||
|
- unterschiedliche nffts auf anderem rechner laufen lassen evtl um unterschiede zu sehen
|
||||||
|
|
||||||
|
long term:
|
||||||
|
- extra datei mit script drin um fertige daten darzustellen, den fit-code als datenverarbeitung allein verwenden
|
||||||
|
- darstellung: specgram --> rausgezogene jarspur darüber --> filterung --> fit und daten zusammen dargestellt, das ganze für verschiedene frequenzen
|
||||||
|
- größe/evtl. gewicht nachtragen, eod basefrequenz rausziehen und zuweisen
|
||||||
|
- liste mit eigenschaften der fische (dominanz/größe), messvariablen (temp/conductivity), eodf und evtl ampl machen um diese plotten zu können
|
||||||
|
|
||||||
|
- phase in degree
|
50
plot_eigenmannia_jar.py
Normal file
50
plot_eigenmannia_jar.py
Normal file
@ -0,0 +1,50 @@
|
|||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
import nix_helpers as nh
|
||||||
|
from IPython import embed
|
||||||
|
|
||||||
|
res_df1 = np.load('res_df1.npy')
|
||||||
|
res_df2 = np.load('res_df2.npy')
|
||||||
|
res_df = np.load('res_df.npy')
|
||||||
|
|
||||||
|
mres = []
|
||||||
|
mdf = []
|
||||||
|
|
||||||
|
currf = None
|
||||||
|
idxlist = []
|
||||||
|
|
||||||
|
for i, d in enumerate(res_df):
|
||||||
|
if currf is None or currf == d[0]:
|
||||||
|
currf = d[0]
|
||||||
|
idxlist.append(i)
|
||||||
|
|
||||||
|
else: # currf != f
|
||||||
|
meanres = [] # lists to make mean of
|
||||||
|
meandf = []
|
||||||
|
for x in idxlist:
|
||||||
|
meanres.append(res_df[x][1])
|
||||||
|
meandf.append(res_df[x][0])
|
||||||
|
meanedres = np.mean(meanres)
|
||||||
|
meaneddf = np.mean(meandf)
|
||||||
|
mres.append(meanedres)
|
||||||
|
mdf.append(meaneddf)
|
||||||
|
currf = d[0] # set back for next loop
|
||||||
|
idxlist = [i]
|
||||||
|
meanres = [] # lists to make mean of
|
||||||
|
meandf = []
|
||||||
|
for y in idxlist:
|
||||||
|
meanres.append(res_df[y][1])
|
||||||
|
meandf.append(res_df[y][0])
|
||||||
|
meanedres = np.mean(meanres)
|
||||||
|
meaneddf = np.mean(meandf)
|
||||||
|
mres.append(meanedres)
|
||||||
|
mdf.append(meaneddf)
|
||||||
|
|
||||||
|
plt.plot(mdf, mres, 'o')
|
||||||
|
plt.xlabel('deltaf [Hz]')
|
||||||
|
plt.ylabel('JAR_respones [Hz]')
|
||||||
|
plt.axhline(0, color='grey', lw =1)
|
||||||
|
plt.axvline(0, color='grey', lw = 1)
|
||||||
|
plt.title('JAR_response_to_deltaf_eigenmannia')
|
||||||
|
plt.show()
|
74
sin_all.py
Normal file
74
sin_all.py
Normal file
@ -0,0 +1,74 @@
|
|||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
import pylab
|
||||||
|
from IPython import embed
|
||||||
|
|
||||||
|
def avgNestedLists(nested_vals):
|
||||||
|
"""
|
||||||
|
Averages a 2-D array and returns a 1-D array of all of the columns
|
||||||
|
averaged together, regardless of their dimensions.
|
||||||
|
"""
|
||||||
|
output = []
|
||||||
|
maximum = 0
|
||||||
|
for lst in nested_vals:
|
||||||
|
if len(lst) > maximum:
|
||||||
|
maximum = len(lst)
|
||||||
|
for index in range(maximum): # Go through each index of longest list
|
||||||
|
temp = []
|
||||||
|
for lst in nested_vals: # Go through each list
|
||||||
|
if index < len(lst): # If not an index error
|
||||||
|
temp.append(lst[index])
|
||||||
|
output.append(np.nanmean(temp))
|
||||||
|
return output
|
||||||
|
|
||||||
|
identifier = ['2018lepto4',
|
||||||
|
'2018lepto1',
|
||||||
|
'2018lepto5',
|
||||||
|
'2018lepto76',
|
||||||
|
'2018lepto98',
|
||||||
|
'2019lepto03',
|
||||||
|
'2019lepto24',
|
||||||
|
'2019lepto27',
|
||||||
|
'2019lepto30',
|
||||||
|
'2020lepto04',
|
||||||
|
'2020lepto06',
|
||||||
|
'2020lepto16',
|
||||||
|
'2020lepto19',
|
||||||
|
'2020lepto20'
|
||||||
|
]
|
||||||
|
|
||||||
|
amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1]
|
||||||
|
|
||||||
|
all = []
|
||||||
|
|
||||||
|
for ident in identifier:
|
||||||
|
data = np.load('gain_%s.npy' %ident)
|
||||||
|
all.append(data)
|
||||||
|
|
||||||
|
av = avgNestedLists(all)
|
||||||
|
|
||||||
|
fig = plt.figure()
|
||||||
|
ax = fig.add_subplot(111)
|
||||||
|
ax.plot(amf, av, 'o')
|
||||||
|
ax.set_xscale('log')
|
||||||
|
ax.set_yscale('log')
|
||||||
|
ax.set_title('gaincurve_average_allfish')
|
||||||
|
ax.set_ylabel('gain [Hz/(mV/cm)]')
|
||||||
|
ax.set_xlabel('envelope_frequency [Hz]')
|
||||||
|
plt.show()
|
||||||
|
embed()
|
||||||
|
|
||||||
|
'''len_arr = []
|
||||||
|
for a in all:
|
||||||
|
len_arr.append(len(a))
|
||||||
|
max_a = np.max(len_arr)
|
||||||
|
|
||||||
|
arr = np.ma.empty((1,len(all),max_a))
|
||||||
|
arr.mask = True
|
||||||
|
|
||||||
|
for x, a in enumerate(all):
|
||||||
|
arr[:a.shape[0],x] = arr[0][x]
|
||||||
|
embed()
|
||||||
|
|
||||||
|
print(arr.mean(axis = 2))
|
||||||
|
embed()'''
|
@ -10,20 +10,20 @@ from jar_functions import mean_noise_cut
|
|||||||
def take_second(elem): # function for taking the names out of files
|
def take_second(elem): # function for taking the names out of files
|
||||||
return elem[1]
|
return elem[1]
|
||||||
|
|
||||||
identifier = ['2018lepto1',
|
identifier = [#'2018lepto1',
|
||||||
'2018lepto4',
|
#'2018lepto4',
|
||||||
'2018lepto5',
|
#'2018lepto5',
|
||||||
'2018lepto76',
|
#'2018lepto76',
|
||||||
'2018lepto98',
|
#'2018lepto98',
|
||||||
'2019lepto03',
|
#'2019lepto03',
|
||||||
'2019lepto24',
|
#'2019lepto24',
|
||||||
'2019lepto27',
|
#'2019lepto27',
|
||||||
'2019lepto30',
|
'2019lepto30',
|
||||||
'2020lepto04',
|
#'2020lepto04',
|
||||||
'2020lepto06',
|
#'2020lepto06',
|
||||||
'2020lepto16',
|
#'2020lepto16',
|
||||||
'2020lepto19',
|
#'2020lepto19',
|
||||||
'2020lepto20'
|
#'2020lepto20'
|
||||||
]
|
]
|
||||||
for ident in identifier:
|
for ident in identifier:
|
||||||
|
|
||||||
@ -73,7 +73,6 @@ for ident in identifier:
|
|||||||
|
|
||||||
# root mean square
|
# root mean square
|
||||||
RMS = np.sqrt(np.mean(((jm - cutf) - sin_response(cutt, sinv[0], sinv[1], sinv[2]))**2))
|
RMS = np.sqrt(np.mean(((jm - cutf) - sin_response(cutt, sinv[0], sinv[1], sinv[2]))**2))
|
||||||
|
|
||||||
thresh = A / np.sqrt(2)
|
thresh = A / np.sqrt(2)
|
||||||
|
|
||||||
#plt.plot(time, sin_response(time, *sinv), label='fit: f=%f, p=%.2f, A=%.2f' % tuple(sinv))
|
#plt.plot(time, sin_response(time, *sinv), label='fit: f=%f, p=%.2f, A=%.2f' % tuple(sinv))
|
||||||
@ -99,6 +98,7 @@ for ident in identifier:
|
|||||||
meanedp = np.mean(meanp)
|
meanedp = np.mean(meanp)
|
||||||
meanedrms = np.mean(meanrms)
|
meanedrms = np.mean(meanrms)
|
||||||
meanedthresh = np.mean(meanthresh)
|
meanedthresh = np.mean(meanthresh)
|
||||||
|
|
||||||
mgain.append(meanedf)
|
mgain.append(meanedf)
|
||||||
mphaseshift.append(meanedp)
|
mphaseshift.append(meanedp)
|
||||||
rootmeansquare.append(meanedrms)
|
rootmeansquare.append(meanedrms)
|
||||||
@ -118,6 +118,7 @@ for ident in identifier:
|
|||||||
meanedp = np.mean(meanp)
|
meanedp = np.mean(meanp)
|
||||||
meanedrms = np.mean(meanrms)
|
meanedrms = np.mean(meanrms)
|
||||||
meanedthresh = np.mean(meanthresh)
|
meanedthresh = np.mean(meanthresh)
|
||||||
|
|
||||||
mgain.append(meanedf)
|
mgain.append(meanedf)
|
||||||
mphaseshift.append(meanedp)
|
mphaseshift.append(meanedp)
|
||||||
rootmeansquare.append(meanedrms)
|
rootmeansquare.append(meanedrms)
|
||||||
@ -128,9 +129,18 @@ for ident in identifier:
|
|||||||
G = np.max(mgain) / np.sqrt(1 + (2*((np.pi*f*3.14)**2)))
|
G = np.max(mgain) / np.sqrt(1 + (2*((np.pi*f*3.14)**2)))
|
||||||
predict.append(G)
|
predict.append(G)
|
||||||
|
|
||||||
|
# as arrays
|
||||||
|
mgain_arr = np.array(mgain)
|
||||||
|
amfreq_arr = np.array(amfreq)
|
||||||
|
rootmeansquare_arr = np.array(rootmeansquare)
|
||||||
|
threshold_arr = np.array(threshold)
|
||||||
|
|
||||||
|
# condition needed to be fulfilled: RMS < threshold or RMS < mean(RMS)
|
||||||
|
idx_arr = (rootmeansquare_arr < threshold_arr) | (rootmeansquare_arr < np.mean(rootmeansquare_arr))
|
||||||
|
|
||||||
fig = plt.figure()
|
fig = plt.figure()
|
||||||
ax0 = fig.add_subplot(2, 1, 1)
|
ax0 = fig.add_subplot(2, 1, 1)
|
||||||
ax0.plot(amfreq, mgain(RMS<threshold), 'o')
|
ax0.plot(amfreq_arr[idx_arr], mgain_arr[idx_arr], 'o')
|
||||||
#ax0.plot(amf, predict)
|
#ax0.plot(amf, predict)
|
||||||
ax0.set_yscale('log')
|
ax0.set_yscale('log')
|
||||||
ax0.set_xscale('log')
|
ax0.set_xscale('log')
|
||||||
@ -145,23 +155,11 @@ for ident in identifier:
|
|||||||
ax1.plot(amfreq, rootmeansquare, 'o-', label = 'RMS', color ='orange')
|
ax1.plot(amfreq, rootmeansquare, 'o-', label = 'RMS', color ='orange')
|
||||||
ax1.set_xscale('log')
|
ax1.set_xscale('log')
|
||||||
ax1.set_xlabel('envelope_frequency [Hz]')
|
ax1.set_xlabel('envelope_frequency [Hz]')
|
||||||
ax1.set_ylabel('RMS')
|
ax1.set_ylabel('RMS [Hz]')
|
||||||
plt.legend()
|
plt.legend()
|
||||||
pylab.show()
|
pylab.show()
|
||||||
|
|
||||||
embed()
|
np.save('gain_%s' %ident, mgain_arr[idx_arr])
|
||||||
|
np.save('amf%s' %ident, amfreq_arr[idx_arr])
|
||||||
|
|
||||||
# zu eigenmannia: jeden fisch mit amplituden von max und min von modulationstiefe und evtl 1 oder 2 dazwischen
|
embed()
|
||||||
# und dann für die am frequenzen von apteronotus für 15Hz delta f messen
|
|
||||||
|
|
||||||
# mit zu hohem RMS rauskicken: gain/rms < ... (?)
|
|
||||||
# gain kurven als array abspeichern
|
|
||||||
# daten von natalie zu eigenmannia mit + / - delta f anschauen ob unterschiede
|
|
||||||
# unterschiedliche nffts auf anderem rechner laufen lassen evtl um unterschiede zu sehen?
|
|
||||||
|
|
||||||
|
|
||||||
# long term: extra datei mit script drin um fertige daten darzustellen, den code hier als datenverarbeitung allein verwenden
|
|
||||||
# darstellung: specgram --> rausgezogene jarspur darüber --> filterung --> fit und daten zusammen dargestellt, das ganze für verschiedene frequenzen
|
|
||||||
# liste mit eigenschaften der fische (dominanz/größe) und messvariablen (temp/conductivity) machen um diese plotten zu können
|
|
||||||
|
|
||||||
# phase in degree
|
|
@ -6,8 +6,9 @@ import os
|
|||||||
import glob
|
import glob
|
||||||
import IPython
|
import IPython
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import DataLoader as dl
|
#import DataLoader as dl
|
||||||
from IPython import embed
|
from IPython import embed
|
||||||
|
from tqdm import tqdm
|
||||||
from scipy.optimize import curve_fit
|
from scipy.optimize import curve_fit
|
||||||
from jar_functions import step_response
|
from jar_functions import step_response
|
||||||
from jar_functions import sin_response
|
from jar_functions import sin_response
|
||||||
@ -21,7 +22,7 @@ from jar_functions import average
|
|||||||
from jar_functions import import_data
|
from jar_functions import import_data
|
||||||
from jar_functions import import_amfreq
|
from jar_functions import import_amfreq
|
||||||
|
|
||||||
base_path = 'D:\\jar_project\\JAR\\sin\\2019lepto03'
|
base_path = 'D:\\jar_project\\JAR\\sin\\2019lepto30'
|
||||||
|
|
||||||
time_all = []
|
time_all = []
|
||||||
freq_all = []
|
freq_all = []
|
||||||
@ -30,7 +31,7 @@ amfrequencies = []
|
|||||||
gains = []
|
gains = []
|
||||||
files = []
|
files = []
|
||||||
|
|
||||||
for idx, dataset in enumerate(os.listdir(base_path)):
|
for idx, dataset in tqdm(enumerate(os.listdir(base_path))):
|
||||||
if dataset == 'prerecordings':
|
if dataset == 'prerecordings':
|
||||||
continue
|
continue
|
||||||
datapath = os.path.join(base_path, dataset, '%s.nix' % dataset)
|
datapath = os.path.join(base_path, dataset, '%s.nix' % dataset)
|
||||||
@ -42,7 +43,15 @@ for idx, dataset in enumerate(os.listdir(base_path)):
|
|||||||
for d, dat in enumerate(data):
|
for d, dat in enumerate(data):
|
||||||
if len(dat) == 1:
|
if len(dat) == 1:
|
||||||
continue
|
continue
|
||||||
|
'''if len(data) > 0:
|
||||||
|
print(datapath)
|
||||||
|
|
||||||
|
amfreq = import_amfreq(datapath)
|
||||||
|
print(amfreq)
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
embed()
|
||||||
|
'''
|
||||||
file_name = []
|
file_name = []
|
||||||
ID = []
|
ID = []
|
||||||
|
|
||||||
@ -57,7 +66,7 @@ for idx, dataset in enumerate(os.listdir(base_path)):
|
|||||||
file_name.append(ID[0])
|
file_name.append(ID[0])
|
||||||
|
|
||||||
amfreq = import_amfreq(datapath)
|
amfreq = import_amfreq(datapath)
|
||||||
print(amfreq)
|
#print(amfreq)
|
||||||
file_name.append(str(amfreq))
|
file_name.append(str(amfreq))
|
||||||
|
|
||||||
file_name.append(str(d))
|
file_name.append(str(d))
|
||||||
@ -100,8 +109,5 @@ for idx, dataset in enumerate(os.listdir(base_path)):
|
|||||||
|
|
||||||
# save filenames for this fish
|
# save filenames for this fish
|
||||||
np.save('%s files' %ID[0], files)
|
np.save('%s files' %ID[0], files)
|
||||||
print(ID)
|
|
||||||
embed()
|
|
||||||
|
|
||||||
# running average over on AM-period?
|
|
||||||
|
|
||||||
|
embed()
|
@ -72,7 +72,7 @@ for idx, dataset in enumerate(datasets):
|
|||||||
|
|
||||||
mf, tnew = mean_traces(start, stop, timespan, norm, time) # maybe fixed timespan/sampling rate
|
mf, tnew = mean_traces(start, stop, timespan, norm, time) # maybe fixed timespan/sampling rate
|
||||||
|
|
||||||
cf, ct = mean_noise_cut(mf, tnew, n=1250)
|
cf, ct = mean_noise_cut(mf, n=1250)
|
||||||
|
|
||||||
cf_arr = np.array(cf)
|
cf_arr = np.array(cf)
|
||||||
ct_arr = np.array(ct)
|
ct_arr = np.array(ct)
|
||||||
|
Loading…
Reference in New Issue
Block a user