jar_project/sin_response_fit.py
2020-09-02 10:47:31 +02:00

165 lines
4.9 KiB
Python

from scipy import signal
import matplotlib.pyplot as plt
import numpy as np
import pylab
from IPython import embed
from scipy.optimize import curve_fit
from jar_functions import sin_response
from jar_functions import mean_noise_cut
def take_second(elem): # function for taking the names out of files
return elem[1]
identifier = [#'2018lepto1',
#'2018lepto4',
#'2018lepto5',
#'2018lepto76',
#'2018lepto98',
#'2019lepto03',
#'2019lepto24',
#'2019lepto27',
'2019lepto30',
#'2020lepto04',
#'2020lepto06',
#'2020lepto16',
#'2020lepto19',
#'2020lepto20'
]
for ident in identifier:
predict = []
rootmeansquare = []
threshold = []
gain = []
mgain = []
phaseshift = []
mphaseshift = []
amfreq = []
amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1]
currf = None
idxlist = []
data = sorted(np.load('%s files.npy' %ident), key = take_second) # list with filenames in it
for i, d in enumerate(data):
dd = list(d)
jar = np.load('%s.npy' %dd) # load data for every file name
jm = jar - np.mean(jar) # low-pass filtering by subtracting mean
print(dd)
time = np.load('%s time.npy' %dd) # time file
dt = time[1] - time[0]
n = int(1/float(d[1])/dt)
cutf = mean_noise_cut(jm, time, n = n)
cutt = time
#plt.plot(time, jm-cutf, label='cut amfreq')
#plt.plot(time, jm, label='spec')
#plt.legend()
#plt.show()
sinv, sinc = curve_fit(sin_response, time, jm - cutf, [float(d[1]), 2, 0.5]) # fitting
print('frequency, phaseshift, amplitude:', sinv)
p = np.sqrt(sinv[1]**2)
A = np.sqrt(sinv[2] ** 2)
f = float(d[1])
phaseshift.append(p)
gain.append(A)
if f not in amfreq:
amfreq.append(f)
# root mean square
RMS = np.sqrt(np.mean(((jm - cutf) - sin_response(cutt, sinv[0], sinv[1], sinv[2]))**2))
thresh = A / np.sqrt(2)
#plt.plot(time, sin_response(time, *sinv), label='fit: f=%f, p=%.2f, A=%.2f' % tuple(sinv))
#plt.legend()
#plt.show()
# mean over same amfreqs for phase and gain
if currf is None or currf == d[1]:
currf = d[1]
idxlist.append(i)
else: # currf != f
meanf = [] # lists to make mean of
meanp = []
meanrms = []
meanthresh = []
for x in idxlist:
meanf.append(gain[x])
meanp.append(phaseshift[x])
meanrms.append(RMS)
meanthresh.append(thresh)
meanedf = np.mean(meanf)
meanedp = np.mean(meanp)
meanedrms = np.mean(meanrms)
meanedthresh = np.mean(meanthresh)
mgain.append(meanedf)
mphaseshift.append(meanedp)
rootmeansquare.append(meanedrms)
threshold.append(meanedthresh)
currf = d[1] # set back for next loop
idxlist = [i]
meanf = []
meanp = []
meanrms = []
meanthresh = []
for y in idxlist:
meanf.append(gain[y])
meanp.append(phaseshift[y])
meanrms.append(RMS)
meanthresh.append(thresh)
meanedf = np.mean(meanf)
meanedp = np.mean(meanp)
meanedrms = np.mean(meanrms)
meanedthresh = np.mean(meanthresh)
mgain.append(meanedf)
mphaseshift.append(meanedp)
rootmeansquare.append(meanedrms)
threshold.append(meanedthresh)
# predict of gain
for f in amf:
G = np.max(mgain) / np.sqrt(1 + (2*((np.pi*f*3.14)**2)))
predict.append(G)
# as arrays
mgain_arr = np.array(mgain)
amfreq_arr = np.array(amfreq)
rootmeansquare_arr = np.array(rootmeansquare)
threshold_arr = np.array(threshold)
# condition needed to be fulfilled: RMS < threshold or RMS < mean(RMS)
idx_arr = (rootmeansquare_arr < threshold_arr) | (rootmeansquare_arr < np.mean(rootmeansquare_arr))
fig = plt.figure()
ax0 = fig.add_subplot(2, 1, 1)
ax0.plot(amfreq_arr[idx_arr], mgain_arr[idx_arr], 'o')
#ax0.plot(amf, predict)
ax0.set_yscale('log')
ax0.set_xscale('log')
ax0.set_title('%s' % data[0][0])
ax0.set_ylabel('gain [Hz/(mV/cm)]')
ax0.set_xlabel('envelope_frequency [Hz]')
#plt.savefig('%s gain' % data[0][0])
ax1 = fig.add_subplot(2, 1, 2, sharex = ax0)
ax1.plot(amfreq, threshold, 'o-', label = 'threshold', color = 'b')
ax1.set_xscale('log')
ax1.plot(amfreq, rootmeansquare, 'o-', label = 'RMS', color ='orange')
ax1.set_xscale('log')
ax1.set_xlabel('envelope_frequency [Hz]')
ax1.set_ylabel('RMS [Hz]')
plt.legend()
pylab.show()
np.save('gain_%s' %ident, mgain_arr[idx_arr])
np.save('amf%s' %ident, amfreq_arr[idx_arr])
embed()