05.10
This commit is contained in:
		
							parent
							
								
									90d9b19d9a
								
							
						
					
					
						commit
						d231c75806
					
				@ -7,7 +7,7 @@ from matplotlib.mlab import specgram
 | 
				
			|||||||
import os
 | 
					import os
 | 
				
			||||||
from jar_functions import gain_curve_fit
 | 
					from jar_functions import gain_curve_fit
 | 
				
			||||||
 | 
					
 | 
				
			||||||
identifier = ['2018lepto1', '2018lepto4', '2018lepto5', '2018lepto76']
 | 
					identifier = ['2020lepto06']
 | 
				
			||||||
 | 
					
 | 
				
			||||||
tau = []
 | 
					tau = []
 | 
				
			||||||
f_c = []
 | 
					f_c = []
 | 
				
			||||||
@ -42,7 +42,7 @@ for ID in identifier:
 | 
				
			|||||||
    ax.set_ylabel('gain [Hz/(mV/cm)]')
 | 
					    ax.set_ylabel('gain [Hz/(mV/cm)]')
 | 
				
			||||||
    ax.set_xlabel('envelope_frequency [Hz]')
 | 
					    ax.set_xlabel('envelope_frequency [Hz]')
 | 
				
			||||||
    ax.set_title('gaincurve %s' %ID)
 | 
					    ax.set_title('gaincurve %s' %ID)
 | 
				
			||||||
    plt.legend()
 | 
					    plt.legend(loc = 'lower left')
 | 
				
			||||||
    plt.show()
 | 
					    plt.show()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
@ -17,7 +17,7 @@ from jar_functions import gain_curve_fit
 | 
				
			|||||||
def take_second(elem):      # function for taking the names out of files
 | 
					def take_second(elem):      # function for taking the names out of files
 | 
				
			||||||
    return elem[1]
 | 
					    return elem[1]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
identifier = ['2018lepto1']
 | 
					identifier = ['2018lepto98']
 | 
				
			||||||
for ident in identifier:
 | 
					for ident in identifier:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    predict = []
 | 
					    predict = []
 | 
				
			||||||
@ -35,16 +35,16 @@ for ident in identifier:
 | 
				
			|||||||
    currf = None
 | 
					    currf = None
 | 
				
			||||||
    idxlist = []
 | 
					    idxlist = []
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    data = sorted(np.load('%s files.npy' %ident), key = take_second)      # list with filenames in it
 | 
					    data = sorted(np.load('5Hz_%s files.npy' %ident), key = take_second)      # list with filenames in it
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for i, d in enumerate(data):
 | 
					    for i, d in enumerate(data):
 | 
				
			||||||
        dd = list(d)
 | 
					        dd = list(d)
 | 
				
			||||||
        if dd[1] == '0.005':
 | 
					        if dd[1] == '0.5':
 | 
				
			||||||
            jar = np.load('%s.npy' %dd)     # load data for every file name
 | 
					            jar = np.load('5Hz_%s.npy' %dd)     # load data for every file name
 | 
				
			||||||
            jm = jar - np.mean(jar)         # low-pass filtering by subtracting mean
 | 
					            jm = jar - np.mean(jar)         # low-pass filtering by subtracting mean
 | 
				
			||||||
            print(dd)
 | 
					            print(dd)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            time = np.load('%s time.npy' %dd)       # time file
 | 
					            time = np.load('5Hz_%s time.npy' %dd)       # time file
 | 
				
			||||||
            dt = time[1] - time[0]
 | 
					            dt = time[1] - time[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            n = int(1/float(d[1])/dt)
 | 
					            n = int(1/float(d[1])/dt)
 | 
				
			||||||
@ -54,10 +54,11 @@ for ident in identifier:
 | 
				
			|||||||
            sinv, sinc = curve_fit(sin_response, time, jm - cutf, [float(d[1]), 2, 0.5])        # fitting
 | 
					            sinv, sinc = curve_fit(sin_response, time, jm - cutf, [float(d[1]), 2, 0.5])        # fitting
 | 
				
			||||||
            print('frequency, phaseshift, amplitude:', sinv)
 | 
					            print('frequency, phaseshift, amplitude:', sinv)
 | 
				
			||||||
            p = sinv[1]
 | 
					            p = sinv[1]
 | 
				
			||||||
            A = np.sqrt(sinv[2] ** 2)
 | 
					            A = sinv[2]
 | 
				
			||||||
            f = float(d[1])
 | 
					            if A < 0:
 | 
				
			||||||
            if sinv[2] < 0:
 | 
					 | 
				
			||||||
                p = p + np.pi
 | 
					                p = p + np.pi
 | 
				
			||||||
 | 
					                A = -A
 | 
				
			||||||
 | 
					            f = float(d[1])
 | 
				
			||||||
            phaseshift.append(p)
 | 
					            phaseshift.append(p)
 | 
				
			||||||
            gain.append(A)
 | 
					            gain.append(A)
 | 
				
			||||||
            if f not in amfreq:
 | 
					            if f not in amfreq:
 | 
				
			||||||
@ -66,7 +67,7 @@ for ident in identifier:
 | 
				
			|||||||
            # jar trace
 | 
					            # jar trace
 | 
				
			||||||
            plt.plot(time, jar, color = 'C0')
 | 
					            plt.plot(time, jar, color = 'C0')
 | 
				
			||||||
            #plt.hlines(y=np.min(jar) - 2, xmin=0, xmax=400, lw=2.5, color='r', label='stimulus duration')
 | 
					            #plt.hlines(y=np.min(jar) - 2, xmin=0, xmax=400, lw=2.5, color='r', label='stimulus duration')
 | 
				
			||||||
            plt.title('JAR trace 2018lepto1, AM-frequency:%sHz' % float(d[1]))
 | 
					            plt.title('JAR trace 2018lepto98, AM-frequency:%sHz, deltaf = -5Hz' % float(d[1]))
 | 
				
			||||||
            plt.xlabel('time[s]')
 | 
					            plt.xlabel('time[s]')
 | 
				
			||||||
            plt.ylabel('frequency[Hz]')
 | 
					            plt.ylabel('frequency[Hz]')
 | 
				
			||||||
            plt.show()
 | 
					            plt.show()
 | 
				
			||||||
@ -81,7 +82,7 @@ for ident in identifier:
 | 
				
			|||||||
            # filter by running average
 | 
					            # filter by running average
 | 
				
			||||||
            plt.plot(time, jm, color = 'C0', label = 'JAR: subtracted by mean')
 | 
					            plt.plot(time, jm, color = 'C0', label = 'JAR: subtracted by mean')
 | 
				
			||||||
            plt.plot(time, jm - cutf, color = 'darkorange', label = 'JAR: subtracted by mean and step response')
 | 
					            plt.plot(time, jm - cutf, color = 'darkorange', label = 'JAR: subtracted by mean and step response')
 | 
				
			||||||
            plt.title('JAR trace spectogram 2018lepto1: subtraction of mean and step response')
 | 
					            plt.title('JAR trace spectogram 2018lepto98: subtraction of mean and step response, deltaf = -5Hz')
 | 
				
			||||||
            plt.xlabel('time[s]')
 | 
					            plt.xlabel('time[s]')
 | 
				
			||||||
            plt.ylabel('frequency[Hz]')
 | 
					            plt.ylabel('frequency[Hz]')
 | 
				
			||||||
            plt.legend()
 | 
					            plt.legend()
 | 
				
			||||||
@ -89,96 +90,12 @@ for ident in identifier:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
            # jar trace and fit
 | 
					            # jar trace and fit
 | 
				
			||||||
            plt.plot(time, jm - cutf, color = 'darkorange', label = 'JAR: subtracted by mean and step response')
 | 
					            plt.plot(time, jm - cutf, color = 'darkorange', label = 'JAR: subtracted by mean and step response')
 | 
				
			||||||
            phase_gain = [(((sinv[1] % (2 * np.pi)) * 360) / (2 * np.pi)), sinv[2]]
 | 
					            phase_gain = [(((p % (2 * np.pi)) * 360) / (2 * np.pi)), A]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            plt.plot(time, sin_response(time, *sinv), color = 'limegreen', label='fit: phaseshift=%.2f°, gain=%.2f[Hz/(mV/cm)]' % tuple(phase_gain))
 | 
					            plt.plot(time, sin_response(time, *sinv), color = 'limegreen', label='fit: phaseshift=%.2f°, gain=%.2f[Hz/(mV/cm)]' % tuple(phase_gain))
 | 
				
			||||||
            plt.title('JAR trace spectogram 2018lepto1 with fit')
 | 
					            plt.title('JAR trace spectogram 2018lepto98 with fit, deltaf = -5Hz')
 | 
				
			||||||
            plt.xlabel('time[s]')
 | 
					            plt.xlabel('time[s]')
 | 
				
			||||||
            plt.ylabel('frequency[Hz]')
 | 
					            plt.ylabel('frequency[Hz]')
 | 
				
			||||||
            plt.legend()
 | 
					            plt.legend()
 | 
				
			||||||
            plt.show()
 | 
					            plt.show()
 | 
				
			||||||
 | 
					 | 
				
			||||||
            # root mean square
 | 
					 | 
				
			||||||
            RMS = np.sqrt(np.mean(((jm - cutf) - sin_response(cutt, sinv[0], sinv[1], sinv[2]))**2))
 | 
					 | 
				
			||||||
            thresh = A / np.sqrt(2)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
            # mean over same amfreqs for phase and gain
 | 
					 | 
				
			||||||
            if currf is None or currf == d[1]:
 | 
					 | 
				
			||||||
                currf = d[1]
 | 
					 | 
				
			||||||
                idxlist.append(i)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
            else:  # currf != f
 | 
					 | 
				
			||||||
                meanf = []  # lists to make mean of
 | 
					 | 
				
			||||||
                meanp = []
 | 
					 | 
				
			||||||
                meanrms = []
 | 
					 | 
				
			||||||
                meanthresh = []
 | 
					 | 
				
			||||||
                for x in idxlist:
 | 
					 | 
				
			||||||
                    meanf.append(gain[x])
 | 
					 | 
				
			||||||
                    meanp.append(phaseshift[x])
 | 
					 | 
				
			||||||
                    meanrms.append(RMS)
 | 
					 | 
				
			||||||
                    meanthresh.append(thresh)
 | 
					 | 
				
			||||||
                meanedf = np.mean(meanf)
 | 
					 | 
				
			||||||
                meanedp = np.mean(meanp)
 | 
					 | 
				
			||||||
                meanedrms = np.mean(meanrms)
 | 
					 | 
				
			||||||
                meanedthresh = np.mean(meanthresh)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
                mgain.append(meanedf)
 | 
					 | 
				
			||||||
                mphaseshift.append(meanedp)
 | 
					 | 
				
			||||||
                rootmeansquare.append(meanedrms)
 | 
					 | 
				
			||||||
                threshold.append(meanedthresh)
 | 
					 | 
				
			||||||
                currf = d[1]    # set back for next loop
 | 
					 | 
				
			||||||
                idxlist = [i]
 | 
					 | 
				
			||||||
    meanf = []
 | 
					 | 
				
			||||||
    meanp = []
 | 
					 | 
				
			||||||
    meanrms = []
 | 
					 | 
				
			||||||
    meanthresh = []
 | 
					 | 
				
			||||||
    for y in idxlist:
 | 
					 | 
				
			||||||
        meanf.append(gain[y])
 | 
					 | 
				
			||||||
        meanp.append(phaseshift[y])
 | 
					 | 
				
			||||||
        meanrms.append(RMS)
 | 
					 | 
				
			||||||
        meanthresh.append(thresh)
 | 
					 | 
				
			||||||
    meanedf = np.mean(meanf)
 | 
					 | 
				
			||||||
    meanedp = np.mean(meanp)
 | 
					 | 
				
			||||||
    meanedrms = np.mean(meanrms)
 | 
					 | 
				
			||||||
    meanedthresh = np.mean(meanthresh)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    mgain.append(meanedf)
 | 
					 | 
				
			||||||
    mphaseshift.append(meanedp)
 | 
					 | 
				
			||||||
    rootmeansquare.append(meanedrms)
 | 
					 | 
				
			||||||
    threshold.append(meanedthresh)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    # as arrays
 | 
					 | 
				
			||||||
    mgain_arr = np.array(mgain)
 | 
					 | 
				
			||||||
    mphaseshift_arr = np.array(mphaseshift)
 | 
					 | 
				
			||||||
    amfreq_arr = np.array(amfreq)
 | 
					 | 
				
			||||||
    rootmeansquare_arr = np.array(rootmeansquare)
 | 
					 | 
				
			||||||
    threshold_arr = np.array(threshold)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    # condition needed to be fulfilled: RMS < threshold or RMS < mean(RMS)
 | 
					 | 
				
			||||||
    idx_arr = (rootmeansquare_arr < threshold_arr) | (rootmeansquare_arr < np.mean(rootmeansquare_arr))
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    fig = plt.figure()
 | 
					 | 
				
			||||||
    ax0 = fig.add_subplot(2, 1, 1)
 | 
					 | 
				
			||||||
    ax0.plot(amfreq_arr[idx_arr], mgain_arr[idx_arr], 'o')
 | 
					 | 
				
			||||||
    ax0.set_yscale('log')
 | 
					 | 
				
			||||||
    ax0.set_xscale('log')
 | 
					 | 
				
			||||||
    ax0.set_title('%s' % data[0][0])
 | 
					 | 
				
			||||||
    ax0.set_ylabel('gain [Hz/(mV/cm)]')
 | 
					 | 
				
			||||||
    ax0.set_xlabel('envelope_frequency [Hz]')
 | 
					 | 
				
			||||||
    #plt.savefig('%s gain' % data[0][0])
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ax1 = fig.add_subplot(2, 1, 2, sharex = ax0)
 | 
					 | 
				
			||||||
    ax1.plot(amfreq, threshold, 'o-', label = 'threshold', color = 'b')
 | 
					 | 
				
			||||||
    ax1.set_xscale('log')
 | 
					 | 
				
			||||||
    ax1.plot(amfreq, rootmeansquare, 'o-', label = 'RMS', color ='orange')
 | 
					 | 
				
			||||||
    ax1.set_xscale('log')
 | 
					 | 
				
			||||||
    ax1.set_xlabel('envelope_frequency [Hz]')
 | 
					 | 
				
			||||||
    ax1.set_ylabel('RMS [Hz]')
 | 
					 | 
				
			||||||
    plt.legend()
 | 
					 | 
				
			||||||
    pylab.show()
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    #np.save('phaseshift_%s' % ident, mphaseshift_arr[idx_arr])
 | 
					 | 
				
			||||||
    #np.save('gain_%s' %ident, mgain_arr[idx_arr])
 | 
					 | 
				
			||||||
    #np.save('amf_%s' %ident, amfreq_arr[idx_arr])
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
            embed()
 | 
					            embed()
 | 
				
			||||||
@ -17,7 +17,7 @@ from jar_functions import gain_curve_fit
 | 
				
			|||||||
def take_second(elem):      # function for taking the names out of files
 | 
					def take_second(elem):      # function for taking the names out of files
 | 
				
			||||||
    return elem[1]
 | 
					    return elem[1]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
identifier = ['2018lepto1']
 | 
					identifier = ['2019lepto03']
 | 
				
			||||||
for ident in identifier:
 | 
					for ident in identifier:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    predict = []
 | 
					    predict = []
 | 
				
			||||||
@ -35,16 +35,16 @@ for ident in identifier:
 | 
				
			|||||||
    currf = None
 | 
					    currf = None
 | 
				
			||||||
    idxlist = []
 | 
					    idxlist = []
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    data = sorted(np.load('%s files.npy' %ident), key = take_second)      # list with filenames in it
 | 
					    data = sorted(np.load('5Hz_%s files.npy' %ident), key = take_second)      # list with filenames in it
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for i, d in enumerate(data):
 | 
					    for i, d in enumerate(data):
 | 
				
			||||||
        dd = list(d)
 | 
					        dd = list(d)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        jar = np.load('%s.npy' %dd)     # load data for every file name
 | 
					        jar = np.load('5Hz_%s.npy' %dd)     # load data for every file name
 | 
				
			||||||
        jm = jar - np.mean(jar)         # low-pass filtering by subtracting mean
 | 
					        jm = jar - np.mean(jar)         # low-pass filtering by subtracting mean
 | 
				
			||||||
        print(dd)
 | 
					        print(dd)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        time = np.load('%s time.npy' %dd)       # time file
 | 
					        time = np.load('5Hz_%s time.npy' %dd)       # time file
 | 
				
			||||||
        dt = time[1] - time[0]
 | 
					        dt = time[1] - time[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        n = int(1/float(d[1])/dt)
 | 
					        n = int(1/float(d[1])/dt)
 | 
				
			||||||
@ -127,7 +127,7 @@ for ident in identifier:
 | 
				
			|||||||
    ax0.plot(amfreq_arr[idx_arr], mgain_arr[idx_arr], 'o')
 | 
					    ax0.plot(amfreq_arr[idx_arr], mgain_arr[idx_arr], 'o')
 | 
				
			||||||
    ax0.set_yscale('log')
 | 
					    ax0.set_yscale('log')
 | 
				
			||||||
    ax0.set_xscale('log')
 | 
					    ax0.set_xscale('log')
 | 
				
			||||||
    ax0.set_title('gaincurve 2018lepto1')
 | 
					    ax0.set_title('gaincurve 2019lepto03, deltaf = -5Hz')
 | 
				
			||||||
    ax0.set_ylabel('gain [Hz/(mV/cm)]')
 | 
					    ax0.set_ylabel('gain [Hz/(mV/cm)]')
 | 
				
			||||||
    ax0.set_xlabel('envelope_frequency [Hz]')
 | 
					    ax0.set_xlabel('envelope_frequency [Hz]')
 | 
				
			||||||
    #plt.savefig('%s gain' % data[0][0])
 | 
					    #plt.savefig('%s gain' % data[0][0])
 | 
				
			||||||
 | 
				
			|||||||
@ -7,17 +7,17 @@ from jar_functions import gain_curve_fit
 | 
				
			|||||||
from jar_functions import avgNestedLists
 | 
					from jar_functions import avgNestedLists
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
identifier = ['2018lepto1',
 | 
					identifier = [#'2018lepto1',
 | 
				
			||||||
              '2018lepto4',
 | 
					              #'2018lepto4',
 | 
				
			||||||
              '2018lepto5',
 | 
					              #'2018lepto5',
 | 
				
			||||||
              '2018lepto76',
 | 
					              #'2018lepto76',
 | 
				
			||||||
              '2018lepto98',
 | 
					              '2018lepto98',
 | 
				
			||||||
              '2019lepto03',
 | 
					              #'2019lepto03',
 | 
				
			||||||
              '2019lepto24',
 | 
					              #'2019lepto24',
 | 
				
			||||||
              '2019lepto27',
 | 
					              #'2019lepto27',
 | 
				
			||||||
              '2019lepto30',
 | 
					              #'2019lepto30',
 | 
				
			||||||
              '2020lepto04',
 | 
					              #'2020lepto04',
 | 
				
			||||||
              '2020lepto06',
 | 
					              #'2020lepto06',
 | 
				
			||||||
              '2020lepto16',
 | 
					              '2020lepto16',
 | 
				
			||||||
              '2020lepto19',
 | 
					              '2020lepto19',
 | 
				
			||||||
              '2020lepto20'
 | 
					              '2020lepto20'
 | 
				
			||||||
@ -28,14 +28,14 @@ amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1]
 | 
				
			|||||||
all = []
 | 
					all = []
 | 
				
			||||||
 | 
					
 | 
				
			||||||
for ident in identifier:
 | 
					for ident in identifier:
 | 
				
			||||||
    data = np.load('gain_%s.npy' %ident)
 | 
					    data = np.load('5Hz_gain_%s.npy' %ident)
 | 
				
			||||||
    all.append(data)
 | 
					    all.append(data)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
av = avgNestedLists(all)
 | 
					av = avgNestedLists(all)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
fig = plt.figure()
 | 
					fig = plt.figure()
 | 
				
			||||||
ax = fig.add_subplot(111)
 | 
					ax = fig.add_subplot(111)
 | 
				
			||||||
ax.plot(amf, av, 'o')
 | 
					ax.plot(amf, av, 'o', c = 'C0', label = 'gain')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#plt.show()
 | 
					#plt.show()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -45,8 +45,8 @@ fit = []
 | 
				
			|||||||
fit_amf = []
 | 
					fit_amf = []
 | 
				
			||||||
for ID in identifier:
 | 
					for ID in identifier:
 | 
				
			||||||
    print(ID)
 | 
					    print(ID)
 | 
				
			||||||
    amf = np.load('amf_%s.npy' %ID)
 | 
					    amf = np.load('5Hz_amf_%s.npy' %ID)
 | 
				
			||||||
    gain = np.load('gain_%s.npy' %ID)
 | 
					    gain = np.load('5Hz_gain_%s.npy' %ID)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    sinv, sinc = curve_fit(gain_curve_fit, amf, gain)
 | 
					    sinv, sinc = curve_fit(gain_curve_fit, amf, gain)
 | 
				
			||||||
    #print('tau:', sinv[0])
 | 
					    #print('tau:', sinv[0])
 | 
				
			||||||
@ -56,17 +56,19 @@ for ID in identifier:
 | 
				
			|||||||
    f_c.append(f_cutoff)
 | 
					    f_c.append(f_cutoff)
 | 
				
			||||||
    fit.append(gain_curve_fit(amf, *sinv))
 | 
					    fit.append(gain_curve_fit(amf, *sinv))
 | 
				
			||||||
    fit_amf.append(amf)
 | 
					    fit_amf.append(amf)
 | 
				
			||||||
 | 
					col = plt.cm.magma(np.linspace(0,0.8,len(fit)))
 | 
				
			||||||
 | 
					for ff ,f in enumerate(fit):
 | 
				
			||||||
 | 
					    ax.plot(fit_amf[ff], fit[ff], c = col[ff])
 | 
				
			||||||
 | 
					    ax.axvline(x=f_c[ff], ymin=0, ymax=5, alpha=0.8, c = col[ff])  # colors_uniform[ff])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#for ff ,f in enumerate(fit):
 | 
					 | 
				
			||||||
#    ax.plot(fit_amf[ff], fit[ff])
 | 
					 | 
				
			||||||
ax.set_xscale('log')
 | 
					ax.set_xscale('log')
 | 
				
			||||||
ax.set_yscale('log')
 | 
					ax.set_yscale('log')
 | 
				
			||||||
ax.set_title('gaincurve_average_allfish')
 | 
					ax.set_title('gain average all fish, deltaf: -5Hz')
 | 
				
			||||||
ax.set_ylabel('gain [Hz/(mV/cm)]')
 | 
					ax.set_ylabel('gain [Hz/(mV/cm)]')
 | 
				
			||||||
ax.set_xlabel('envelope_frequency [Hz]')
 | 
					ax.set_xlabel('envelope_frequency [Hz]')
 | 
				
			||||||
ax.set_ylim(0.0008, )
 | 
					ax.set_ylim(0.0008, )
 | 
				
			||||||
ax.plot(f_c, np.full(len(identifier), 0.0015), 'o', label = 'cutoff frequencies')
 | 
					#ax.plot(f_c, np.full(len(identifier), 0.0015), 'o', alpha = 0.5, c = 'darkorange', label = 'cutoff frequencies')
 | 
				
			||||||
ax.legend()
 | 
					ax.legend(loc = 'center left')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
plt.show()
 | 
					plt.show()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
@ -10,17 +10,17 @@ from matplotlib import cm
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
identifier_uniform = ['2018lepto1',
 | 
					identifier_uniform = ['2018lepto1',
 | 
				
			||||||
              #'2018lepto4',
 | 
					              #'2018lepto4',
 | 
				
			||||||
              # '2018lepto5',
 | 
					              '2018lepto5',
 | 
				
			||||||
              #'2018lepto76',
 | 
					              '2018lepto76',
 | 
				
			||||||
              '2018lepto98',
 | 
					              '2018lepto98',
 | 
				
			||||||
              #'2019lepto03',
 | 
					              #'2019lepto03',
 | 
				
			||||||
              '2019lepto24',
 | 
					              '2019lepto24',
 | 
				
			||||||
              #'2019lepto27',
 | 
					              #'2019lepto27',
 | 
				
			||||||
              #'2019lepto30',
 | 
					              #'2019lepto30',
 | 
				
			||||||
              '2020lepto04',
 | 
					              #'2020lepto04',
 | 
				
			||||||
              # '2020lepto06',
 | 
					              '2020lepto06',
 | 
				
			||||||
              #'2020lepto16',
 | 
					              #'2020lepto16',
 | 
				
			||||||
              '2020lepto19',
 | 
					              #'2020lepto19',
 | 
				
			||||||
              #'2020lepto20'
 | 
					              #'2020lepto20'
 | 
				
			||||||
              ]
 | 
					              ]
 | 
				
			||||||
identifier = ['2018lepto1',
 | 
					identifier = ['2018lepto1',
 | 
				
			||||||
@ -32,10 +32,10 @@ identifier = ['2018lepto1',
 | 
				
			|||||||
              '2019lepto24',
 | 
					              '2019lepto24',
 | 
				
			||||||
              '2019lepto27',
 | 
					              '2019lepto27',
 | 
				
			||||||
              '2019lepto30',
 | 
					              '2019lepto30',
 | 
				
			||||||
              '2020lepto04',
 | 
					              #'2020lepto04',
 | 
				
			||||||
              '2020lepto06',
 | 
					              '2020lepto06',
 | 
				
			||||||
              '2020lepto16',
 | 
					              '2020lepto16',
 | 
				
			||||||
              '2020lepto19',
 | 
					              #'2020lepto19',
 | 
				
			||||||
              '2020lepto20'
 | 
					              '2020lepto20'
 | 
				
			||||||
              ]
 | 
					              ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -56,15 +56,15 @@ new_av = avgNestedLists(new_all)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
fig = plt.figure()
 | 
					fig = plt.figure()
 | 
				
			||||||
ax = fig.add_subplot(111)
 | 
					ax = fig.add_subplot(111)
 | 
				
			||||||
#ax.plot(amf, av, 'o', color = 'orange', label = 'normal')
 | 
					ax.plot(amf, av, 'o', color = 'darkorange', label = 'normal')
 | 
				
			||||||
ax.plot(amf, new_av, 'o', label = 'uniformed')
 | 
					ax.plot(amf, new_av, 'o', label = 'uniform')
 | 
				
			||||||
"""
 | 
					
 | 
				
			||||||
tau = []
 | 
					tau = []
 | 
				
			||||||
f_c = []
 | 
					f_c = []
 | 
				
			||||||
fit = []
 | 
					fit = []
 | 
				
			||||||
fit_amf = []
 | 
					fit_amf = []
 | 
				
			||||||
for ID in identifier:
 | 
					for ID in identifier:
 | 
				
			||||||
    #print(ID)
 | 
					    print(ID)
 | 
				
			||||||
    amf = np.load('amf_%s.npy' %ID)
 | 
					    amf = np.load('amf_%s.npy' %ID)
 | 
				
			||||||
    gain = np.load('gain_%s.npy' %ID)
 | 
					    gain = np.load('gain_%s.npy' %ID)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -72,47 +72,46 @@ for ID in identifier:
 | 
				
			|||||||
    #print('tau:', sinv[0])
 | 
					    #print('tau:', sinv[0])
 | 
				
			||||||
    tau.append(sinv[0])
 | 
					    tau.append(sinv[0])
 | 
				
			||||||
    f_cutoff = abs(1 / (2*np.pi*sinv[0]))
 | 
					    f_cutoff = abs(1 / (2*np.pi*sinv[0]))
 | 
				
			||||||
    #print('f_cutoff:', f_cutoff)
 | 
					    print('f_cutoff:', f_cutoff)
 | 
				
			||||||
    f_c.append(f_cutoff)
 | 
					    f_c.append(f_cutoff)
 | 
				
			||||||
    fit.append(gain_curve_fit(amf, *sinv))
 | 
					    fit.append(gain_curve_fit(amf, *sinv))
 | 
				
			||||||
    fit_amf.append(amf)
 | 
					    fit_amf.append(amf)
 | 
				
			||||||
"""
 | 
					
 | 
				
			||||||
 | 
					# uniformed: 2018lepto5, 2018lepto1, 2018lepto76,  2018lepto98, 2020lepto06, 2019lepto24, 2020lepto4
 | 
				
			||||||
 | 
					
 | 
				
			||||||
tau_uniform = []
 | 
					tau_uniform = []
 | 
				
			||||||
f_c_uniform = []
 | 
					f_c_uniform = []
 | 
				
			||||||
fit_uniform = []
 | 
					fit_uniform = []
 | 
				
			||||||
fit_amf_uniform = []
 | 
					fit_amf_uniform = []
 | 
				
			||||||
for ID in identifier_uniform:
 | 
					for ID in identifier_uniform:
 | 
				
			||||||
    #print(ID)
 | 
					    print(ID)
 | 
				
			||||||
    amf = np.load('amf_%s.npy' %ID)
 | 
					    amf = np.load('amf_%s.npy' %ID)
 | 
				
			||||||
    gain = np.load('gain_%s.npy' %ID)
 | 
					    gain = np.load('gain_%s.npy' %ID)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    sinv, sinc = curve_fit(gain_curve_fit, amf, gain)
 | 
					    sinv, sinc = curve_fit(gain_curve_fit, amf, gain)
 | 
				
			||||||
    #print('tau:', sinv[0])
 | 
					    print('tau:', sinv[0])
 | 
				
			||||||
    tau_uniform.append(sinv[0])
 | 
					    tau_uniform.append(sinv[0])
 | 
				
			||||||
    f_cutoff = abs(1 / (2*np.pi*sinv[0]))
 | 
					    f_cutoff = abs(1 / (2*np.pi*sinv[0]))
 | 
				
			||||||
    #print('f_cutoff:', f_cutoff)
 | 
					    print('f_cutoff:', f_cutoff)
 | 
				
			||||||
    f_c_uniform.append(f_cutoff)
 | 
					    f_c_uniform.append(f_cutoff)
 | 
				
			||||||
    fit_uniform.append(gain_curve_fit(amf, *sinv))
 | 
					    fit_uniform.append(gain_curve_fit(amf, *sinv))
 | 
				
			||||||
    fit_amf_uniform.append(amf)
 | 
					    fit_amf_uniform.append(amf)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
colors_uniform = plt.cm.flag(np.linspace(0.2,0.8,len(fit_uniform)))
 | 
					colors = plt.cm.flag(np.linspace(0,1,len(fit_uniform)))
 | 
				
			||||||
#colors = plt.cm.flag(np.linspace(0.2,0.8,len(fit)))
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
# for ff ,f in enumerate(fit):
 | 
					#for ff ,f in enumerate(fit_uniform):
 | 
				
			||||||
#     ax.plot(fit_amf[ff], fit[ff],color =  colors[ff])
 | 
					#    ax.plot(fit_amf_uniform[ff], fit_uniform[ff],color =  colorss[ff])
 | 
				
			||||||
#     ax.axvline(x=f_c[ff], ymin=0, ymax=5, ls = '-', alpha = 0.5, color= colors[ff])#colors_uniform[ff])
 | 
					#    ax.axvline(x=f_c_uniform[ff], ymin=0, ymax=5, ls = '-', alpha = 0.5, color= colorss[ff])#colors_uniform[ff])
 | 
				
			||||||
 | 
					 | 
				
			||||||
for ff, f in enumerate(fit_uniform):
 | 
					 | 
				
			||||||
    ax.plot(fit_amf_uniform[ff], fit_uniform[ff], color =  colorss[ff]) #colors_uniform[ff])
 | 
					 | 
				
			||||||
    ax.axvline(x=f_c_uniform[ff], ymin=0, ymax=5, ls = '-', alpha = 0.5, color= colorss[ff])#colors_uniform[ff])
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
ax.set_xscale('log')
 | 
					ax.set_xscale('log')
 | 
				
			||||||
ax.set_yscale('log')
 | 
					ax.set_yscale('log')
 | 
				
			||||||
ax.set_title('gaincurve_average_allfish')
 | 
					ax.set_title('gain average all fish uniform')
 | 
				
			||||||
ax.set_ylabel('gain [Hz/(mV/cm)]')
 | 
					ax.set_ylabel('gain [Hz/(mV/cm)]')
 | 
				
			||||||
ax.set_xlabel('envelope_frequency [Hz]')
 | 
					ax.set_xlabel('envelope_frequency [Hz]')
 | 
				
			||||||
ax.set_ylim(0.0008, )
 | 
					ax.set_ylim(0.0008, )
 | 
				
			||||||
ax.legend()
 | 
					ax.plot(f_c, np.full(len(identifier), 0.0015), 'o', alpha = 0.5, c = 'darkorange', label = 'normal cutoff frequencies')
 | 
				
			||||||
 | 
					ax.plot(f_c_uniform, np.full(len(identifier_uniform), 0.002), 'o', alpha = 0.5, c = 'C0', label = 'uniform cutoff frequencies')
 | 
				
			||||||
 | 
					ax.legend(loc = 'center left')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
plt.show()
 | 
					plt.show()
 | 
				
			||||||
embed()
 | 
					embed()
 | 
				
			||||||
 | 
				
			|||||||
@ -14,7 +14,8 @@ from scipy.signal import savgol_filter
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
base_path = 'D:\\jar_project\\JAR\\eigenmannia\\deltaf'
 | 
					base_path = 'D:\\jar_project\\JAR\\eigenmannia\\deltaf'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
identifier = ['2013eigen13','2015eigen16', '2015eigen17', '2015eigen19', '2020eigen22','2020eigen32']
 | 
					#2015eigen8 no nix files
 | 
				
			||||||
 | 
					identifier = ['2015eigen16', '2013eigen13','2015eigen17', '2015eigen19', '2020eigen22','2020eigen32']
 | 
				
			||||||
 | 
					
 | 
				
			||||||
response = []
 | 
					response = []
 | 
				
			||||||
deltaf = []
 | 
					deltaf = []
 | 
				
			||||||
@ -47,8 +48,8 @@ for ID in identifier:
 | 
				
			|||||||
        eodf = fish_f[index]
 | 
					        eodf = fish_f[index]
 | 
				
			||||||
        eodf4 = eodf * 4
 | 
					        eodf4 = eodf * 4
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        lim0 = eodf4 - 50
 | 
					        lim0 = eodf4 - 40
 | 
				
			||||||
        lim1 = eodf4 + 50
 | 
					        lim1 = eodf4 + 40
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        df = freqs[1] - freqs[0]
 | 
					        df = freqs[1] - freqs[0]
 | 
				
			||||||
        ix0 = int(np.floor(lim0/df))    # back to index
 | 
					        ix0 = int(np.floor(lim0/df))    # back to index
 | 
				
			||||||
@ -58,10 +59,17 @@ for ID in identifier:
 | 
				
			|||||||
        jar4 = freq4[np.argmax(spec4, axis=0)]      # all freqs at max specs over axis 0
 | 
					        jar4 = freq4[np.argmax(spec4, axis=0)]      # all freqs at max specs over axis 0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        cut_time_jar = times[:len(jar4)]
 | 
					        cut_time_jar = times[:len(jar4)]
 | 
				
			||||||
 | 
					        ID_delta_f = [ID, str(delta_f[0]).split('.')[0]]
 | 
				
			||||||
        #plt.imshow(spec4, cmap='jet', origin='lower', extent=(times[0], times[-1], lim0, lim1), aspect='auto', vmin=-80, vmax=-10)
 | 
					        plt.imshow(spec4, cmap='jet', origin='lower', extent=(times[0] - 10, times[-1] - 10, lim0, lim1), aspect='auto', vmin=-80, vmax=-10)
 | 
				
			||||||
        #plt.plot(cut_time_jar, jar4)
 | 
					        plt.plot((cut_time_jar - 10), jar4, 'k', label = 'jar trace', lw = 2)
 | 
				
			||||||
 | 
					        plt.hlines(y=lim0 + 5, xmin=0, xmax=60, lw=2.5, color='gold', label='stimulus duration')
 | 
				
			||||||
 | 
					        plt.title('spectogram %s, deltaf: %sHz' %tuple(ID_delta_f))
 | 
				
			||||||
 | 
					        plt.xlim(right=times[-1] - 10)
 | 
				
			||||||
 | 
					        plt.legend()
 | 
				
			||||||
        #plt.show()
 | 
					        #plt.show()
 | 
				
			||||||
 | 
					        delta_f_ID = [str(delta_f[0]).split('.')[0], ID]
 | 
				
			||||||
 | 
					        plt.savefig('%sHz_specgram_jar_%s' %tuple(delta_f_ID))
 | 
				
			||||||
 | 
					        plt.close()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        b = []
 | 
					        b = []
 | 
				
			||||||
        for idx, i in enumerate(times):
 | 
					        for idx, i in enumerate(times):
 | 
				
			||||||
@ -79,8 +87,4 @@ for ID in identifier:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    res_df = sorted(zip(deltaf,response))
 | 
					    res_df = sorted(zip(deltaf,response))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    np.save('res_df_%s_new' %ID, res_df)
 | 
					    #np.save('res_df_%s_new' %ID, res_df)
 | 
				
			||||||
 | 
					 | 
				
			||||||
# problem: rohdaten(data, pre_data) lassen sich auf grund ihrer 1D-array struktur nicht savgol filtern
 | 
					 | 
				
			||||||
# diese bekomm ich nur über specgram in form von freq / time auftragen, was nicht mehr savgol gefiltert werden kann
 | 
					 | 
				
			||||||
# jedoch könnte ich trotzdem einfach aus jar4 response herauslesen wobei dies dann weniger gefiltert wäre
 | 
					 | 
				
			||||||
 | 
				
			|||||||
							
								
								
									
										46
									
								
								notes
									
									
									
									
									
								
							
							
						
						
									
										46
									
								
								notes
									
									
									
									
									
								
							@ -1,10 +1,19 @@
 | 
				
			|||||||
 | 
					machen:
 | 
				
			||||||
 | 
					- phaseshift (sin_all) nochmal, nicht richtiges Dings verwendet ( sinv[2]/p) und dann auch in phaseshift
 | 
				
			||||||
 | 
					- abbildung erstellen mit custom cutoff frequencies über ganzen bereich (0.001Hz-1Hz) um hoffentlich zu zeigen dass dabei lineare
 | 
				
			||||||
 | 
					Gerade entsteht, vergleichen mit uniformen Bereich bei Daten bei dem es sich auch eher linear verhält um zu zeigen auf was wir hinaus wollen
 | 
				
			||||||
 | 
					- filter: zieht mean von einer amfreq periode ab wodurch alles was nicht damit in Verbindung steht herausfiltert,
 | 
				
			||||||
 | 
					auch JAR. problematisch wird dies eher wenn JAR-Anstieg schneller abläuft als eine amfreq periode
 | 
				
			||||||
 | 
					- wenn fit nicht funktioniert einfach weglassen, wenn sättigung vorhanden nochmal anschauen
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
+ figures:
 | 
					+ figures:
 | 
				
			||||||
    apteronotus: fundament by tims bachelor thesis, important that apteronotus only shifts his frequency up (as eigenmannia doesnt --> natalies measurements)
 | 
					    apteronotus: fundament by tims bachelor thesis, important that apteronotus only shifts his frequency up (as eigenmannia doesnt --> natalies measurements)
 | 
				
			||||||
    + spectogram
 | 
					    + spectogram
 | 
				
			||||||
    + jar trace out of specgram
 | 
					    + jar trace out of specgram
 | 
				
			||||||
    + filtering of jar trace: mean noise cut --> subtracting jar response over whole stimulus
 | 
					    + filtering of jar trace: mean noise cut --> subtracting jar response over whole stimulus
 | 
				
			||||||
    + fit and jar trace --> gain and phaseshift
 | 
					    + fit and jar trace --> gain and phaseshift
 | 
				
			||||||
!!! + this for different am-frequencies and delta f (-15/-5Hz) --> compare gain for them
 | 
					    + this for different am-frequencies and delta f (-15/-5Hz) --> compare gain for them
 | 
				
			||||||
    + gain curve for one or more single fish
 | 
					    + gain curve for one or more single fish
 | 
				
			||||||
    + fit of gain curve for cutoff frequency and tau
 | 
					    + fit of gain curve for cutoff frequency and tau
 | 
				
			||||||
    + gain curve for all fish taken together
 | 
					    + gain curve for all fish taken together
 | 
				
			||||||
@ -15,37 +24,30 @@
 | 
				
			|||||||
        fig_apt_gaincurve_cutoff_tau,
 | 
					        fig_apt_gaincurve_cutoff_tau,
 | 
				
			||||||
        sin_all_normal (without single gaincurves),
 | 
					        sin_all_normal (without single gaincurves),
 | 
				
			||||||
        sin_all_uniform (with gaincurves for 5Hz)
 | 
					        sin_all_uniform (with gaincurves for 5Hz)
 | 
				
			||||||
 | 
					    !!! discard 2019lepto03 -5Hz --> RMS always over threshold
 | 
				
			||||||
 | 
					    !!! discard 2020lepto04 gain fit doesnt work
 | 
				
			||||||
 | 
					    !!! discard 2020lepto19 gain fit doesnt work
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    eigenmannia:
 | 
					    eigenmannia:
 | 
				
			||||||
    + deltaf / response: -2Hz different, show it
 | 
					    + deltaf / response: -2Hz different, show it
 | 
				
			||||||
    + spectogram
 | 
					    + spectogram
 | 
				
			||||||
    + direct to fit and jar trace --> gain and phaseshift   DURCH SIN RESPONSE SPEC JAGEN!
 | 
					    + direct to fit and jar trace 
 | 
				
			||||||
    + gain curve for one or more single fish
 | 
					    + gain curve for one or more single fish
 | 
				
			||||||
    + gain curve for all fish taken together
 | 
					    + gain curve for all fish taken together    !!! gains without filtering by RMS
 | 
				
			||||||
    - (step response eigen)
 | 
					    - (step response eigen)
 | 
				
			||||||
 | 
					    --> fig_eig_specgram
 | 
				
			||||||
 | 
					        fig_eig_jar_filter_fit,
 | 
				
			||||||
 | 
					        fig_eig_rms_gaincurve,
 | 
				
			||||||
 | 
					        fig_eig_gaincurve_cutoff_tau,
 | 
				
			||||||
 | 
					        sin_eig_normal (without single gaincurves),
 | 
				
			||||||
 | 
					        sin_eig_uniform (with gaincurves for 5Hz)
 | 
				
			||||||
 | 
					    !!! discard 2015eigen8 --> RMS always over threshold
 | 
				
			||||||
 | 
					    ??? mean_noise_cut_eigen?
 | 
				
			||||||
    fish properties:
 | 
					    fish properties:
 | 
				
			||||||
    + parameters
 | 
					    + parameters
 | 
				
			||||||
    + cutoff frequency - dominance score
 | 
					    + cutoff frequency - dominance score
 | 
				
			||||||
+ eigenmannia deltaf response over all fish mean
 | 
					 | 
				
			||||||
+ phaseshift_all: wenn negativer gain in fit --> +pi rechnen, dann modulo
 | 
					 | 
				
			||||||
- plot_eigenmannia_jar(compare res_df_%s / res_df_%s_new)
 | 
					 | 
				
			||||||
- eigenmannia_jar:
 | 
					 | 
				
			||||||
    - specgram auch zeigen, vorallem was auch die ausreißer bei -2 Hz betreffen
 | 
					 | 
				
			||||||
- fish_properties:
 | 
					 | 
				
			||||||
    - hauptsächlich auf f_c und tau konzentrieren, vor allem auch beides auftragen, gewicht/größe noch nehmen
 | 
					 | 
				
			||||||
- step_response eigen: absolute response
 | 
					 | 
				
			||||||
- Q10 Wert aus Formel von Jan auf base_frequenz rechnen (adjust-eodf in jar_functions)
 | 
					 | 
				
			||||||
- sin_all_uniform - sin_all_normal (also 5Hz, let away 0.001Hz?, gain_fit): fit als spur reinlegen damit klar wird aus was gerade besteht
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
long term:
 | 
					 | 
				
			||||||
- extra datei mit script drin um fertige daten darzustellen, den fit-code nur zur datenverarbeitung verwenden
 | 
					 | 
				
			||||||
- darstellung: specgram --> rausgezogene jarspur darüber --> filterung --> fit und daten zusammen dargestellt, das ganze für verschiedene frequenzen
 | 
					 | 
				
			||||||
- unterschiedliche nffts auf anderem rechner laufen lassen evtl um unterschiede zu sehen
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
- phase in degree: phase % (2pi) - modulo 2pi
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    offen: phaseshift, not working fit for some fish
 | 
				
			||||||
(
 | 
					(
 | 
				
			||||||
- mit zu hohem RMS rauskicken: evtl nur ein trace rauskicken wenn nur da RMS zu hoch
 | 
					 | 
				
			||||||
- 2019lepto27/30: 27 - 0.05Hz (7-27-af, erste dat mit len(dat)=1), 30 - 0.001Hz (7-30-ah mit 0.005 anstatt gewollten 0.001Hz --> fehlt)
 | 
					- 2019lepto27/30: 27 - 0.05Hz (7-27-af, erste dat mit len(dat)=1), 30 - 0.001Hz (7-30-ah mit 0.005 anstatt gewollten 0.001Hz --> fehlt)
 | 
				
			||||||
)
 | 
					)
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user