jar_project/apteronotus_code/sin_all_normal.py
2020-10-05 15:25:49 +02:00

77 lines
1.9 KiB
Python

import matplotlib.pyplot as plt
import numpy as np
import pylab
from IPython import embed
from scipy.optimize import curve_fit
from jar_functions import gain_curve_fit
from jar_functions import avgNestedLists
identifier = [#'2018lepto1',
#'2018lepto4',
#'2018lepto5',
#'2018lepto76',
'2018lepto98',
#'2019lepto03',
#'2019lepto24',
#'2019lepto27',
#'2019lepto30',
#'2020lepto04',
#'2020lepto06',
'2020lepto16',
'2020lepto19',
'2020lepto20'
]
amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1]
all = []
for ident in identifier:
data = np.load('5Hz_gain_%s.npy' %ident)
all.append(data)
av = avgNestedLists(all)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(amf, av, 'o', c = 'C0', label = 'gain')
#plt.show()
tau = []
f_c = []
fit = []
fit_amf = []
for ID in identifier:
print(ID)
amf = np.load('5Hz_amf_%s.npy' %ID)
gain = np.load('5Hz_gain_%s.npy' %ID)
sinv, sinc = curve_fit(gain_curve_fit, amf, gain)
#print('tau:', sinv[0])
tau.append(sinv[0])
f_cutoff = abs(1 / (2*np.pi*sinv[0]))
print('f_cutoff:', f_cutoff)
f_c.append(f_cutoff)
fit.append(gain_curve_fit(amf, *sinv))
fit_amf.append(amf)
col = plt.cm.magma(np.linspace(0,0.8,len(fit)))
for ff ,f in enumerate(fit):
ax.plot(fit_amf[ff], fit[ff], c = col[ff])
ax.axvline(x=f_c[ff], ymin=0, ymax=5, alpha=0.8, c = col[ff]) # colors_uniform[ff])
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_title('gain average all fish, deltaf: -5Hz')
ax.set_ylabel('gain [Hz/(mV/cm)]')
ax.set_xlabel('envelope_frequency [Hz]')
ax.set_ylim(0.0008, )
#ax.plot(f_c, np.full(len(identifier), 0.0015), 'o', alpha = 0.5, c = 'darkorange', label = 'cutoff frequencies')
ax.legend(loc = 'center left')
plt.show()
embed()