import matplotlib.pyplot as plt import numpy as np import pylab from IPython import embed from scipy.optimize import curve_fit from jar_functions import gain_curve_fit from jar_functions import avgNestedLists identifier = [#'2018lepto1', #'2018lepto4', #'2018lepto5', #'2018lepto76', '2018lepto98', #'2019lepto03', #'2019lepto24', #'2019lepto27', #'2019lepto30', #'2020lepto04', #'2020lepto06', '2020lepto16', '2020lepto19', '2020lepto20' ] amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1] all = [] for ident in identifier: data = np.load('5Hz_gain_%s.npy' %ident) all.append(data) av = avgNestedLists(all) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(amf, av, 'o', c = 'C0', label = 'gain') #plt.show() tau = [] f_c = [] fit = [] fit_amf = [] for ID in identifier: print(ID) amf = np.load('5Hz_amf_%s.npy' %ID) gain = np.load('5Hz_gain_%s.npy' %ID) sinv, sinc = curve_fit(gain_curve_fit, amf, gain) #print('tau:', sinv[0]) tau.append(sinv[0]) f_cutoff = abs(1 / (2*np.pi*sinv[0])) print('f_cutoff:', f_cutoff) f_c.append(f_cutoff) fit.append(gain_curve_fit(amf, *sinv)) fit_amf.append(amf) col = plt.cm.magma(np.linspace(0,0.8,len(fit))) for ff ,f in enumerate(fit): ax.plot(fit_amf[ff], fit[ff], c = col[ff]) ax.axvline(x=f_c[ff], ymin=0, ymax=5, alpha=0.8, c = col[ff]) # colors_uniform[ff]) ax.set_xscale('log') ax.set_yscale('log') ax.set_title('gain average all fish, deltaf: -5Hz') ax.set_ylabel('gain [Hz/(mV/cm)]') ax.set_xlabel('envelope_frequency [Hz]') ax.set_ylim(0.0008, ) #ax.plot(f_c, np.full(len(identifier), 0.0015), 'o', alpha = 0.5, c = 'darkorange', label = 'cutoff frequencies') ax.legend(loc = 'center left') plt.show() embed()