something works !!!

This commit is contained in:
Till Raab 2023-10-24 08:56:35 +02:00
parent 30a9e71e76
commit 85e675fb48
4 changed files with 152 additions and 20 deletions

View File

@ -1,8 +1,9 @@
import torch
import pathlib
BATCH_SIZE = 4
RESIZE_TO = 416
NUM_EPOCHS = 10
NUM_EPOCHS = 20
NUM_WORKERS = 4
DEVICE = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
@ -14,3 +15,7 @@ CLASSES = ['__backgroud__', '1']
NUM_CLASSES = len(CLASSES)
OUTDIR = 'model_outputs'
if not pathlib.Path(OUTDIR).exists():
pathlib.Path(OUTDIR).mkdir(parents=True, exist_ok=True)

View File

@ -1,6 +1,84 @@
import torch
import matplotlib.pyplot as plt
from confic import OUTDIR
class Averager:
def __init__(self):
self.current_total = 0.0
self.iterations = 0.0
def send(self, value):
self.current_total += value
self.iterations += 1
@property
def value(self):
if self.iterations == 0:
return 0
else:
return 1.0 * self.current_total / self.iterations
def reset(self):
self.current_total = 0.0
self.iterations = 0.0
class SaveBestModel:
"""
Class to save the best model while training. If the current epoch's
validation loss is less than the previous least less, then save the
model state.
"""
def __init__(
self, best_valid_loss=float('inf')
):
self.best_valid_loss = best_valid_loss
def __call__(
self, current_valid_loss,
epoch, model, optimizer
):
if current_valid_loss < self.best_valid_loss:
self.best_valid_loss = current_valid_loss
print(f"\nBest validation loss: {self.best_valid_loss}")
print(f"\nSaving best model for epoch: {epoch + 1}\n")
torch.save({
'epoch': epoch + 1,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, f'./{OUTDIR}/best_model.pth')
def collate_fn(batch):
"""
To handle the data loading as different images may have different number
of objects and to handle varying size tensors as well.
"""
return tuple(zip(*batch))
def save_model(epoch, model, optimizer):
"""
Function to save the trained model till current epoch, or whenver called
"""
torch.save({
'epoch': epoch+1,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, f'./{OUTDIR}/last_model.pth')
def save_loss_plot(OUT_DIR, train_loss, val_loss):
figure_1, train_ax = plt.subplots()
figure_2, valid_ax = plt.subplots()
train_ax.plot(train_loss, color='tab:blue')
train_ax.set_xlabel('iterations')
train_ax.set_ylabel('train loss')
valid_ax.plot(val_loss, color='tab:red')
valid_ax.set_xlabel('iterations')
valid_ax.set_ylabel('validation loss')
figure_1.savefig(f"{OUT_DIR}/train_loss.png")
figure_2.savefig(f"{OUT_DIR}/valid_loss.png")
print('SAVING PLOTS COMPLETE...')
plt.close('all')

View File

@ -23,6 +23,6 @@ def create_model(num_classes: int) -> torch.nn.Module:
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes+1)
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
return model

View File

@ -2,7 +2,9 @@ from confic import (DEVICE, NUM_CLASSES, NUM_EPOCHS, OUTDIR, NUM_WORKERS, TRAIN_
from model import create_model
from tqdm.auto import tqdm
from datasets import create_train_test_dataset, create_train_loader, create_valid_loader
from custom_utils import Averager, SaveBestModel, save_model, save_loss_plot
import torch
import matplotlib.pyplot as plt
@ -10,34 +12,81 @@ import time
from IPython import embed
if __name__ == '__main__':
train_data, test_data = create_train_test_dataset(TRAIN_DIR)
train_loader = create_train_loader(train_data)
test_loader = create_train_loader(test_data)
def train(train_loader, model, optimizer):
print('Training')
global train_loss_list
model = create_model(num_classes=1)
model = model.to(DEVICE)
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.001, momentum=0.9, weight_decay=0.0005)
for epoch in range(NUM_EPOCHS):
prog_bar = tqdm(train_loader, total=len(train_loader))
for samples, targets in prog_bar:
images = list(image.to(DEVICE) for image in samples)
targets = [{k: v.to(DEVICE) for k, v in t.items()} for t in targets]
try:
loss_dict = model(images, targets)
except:
embed()
quit()
losses = sum(loss for loss in loss_dict.values())
loss_value = losses.item()
train_loss_hist.send(loss_value) # this is a global instance !!!
train_loss_list.append(loss_value) # check what exactly this does !!!
optimizer.zero_grad()
losses.backward()
optimizer.step()
prog_bar.set_description(desc=f"Loss: {loss_value:.4f}")
return train_loss_list
if __name__ == '__main__':
train_data, test_data = create_train_test_dataset(TRAIN_DIR)
train_loader = create_train_loader(train_data)
test_loader = create_train_loader(test_data)
model = create_model(num_classes=NUM_CLASSES)
model = model.to(DEVICE)
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.001, momentum=0.9, weight_decay=0.0005)
train_loss_hist = Averager()
val_loss_hist = Averager()
# train_itr = 1
# val_itr = 1
train_loss_list = []
val_loss_list = []
save_best_model = SaveBestModel()
for epoch in range(NUM_EPOCHS):
train_loss_hist.reset()
val_loss_hist.reset()
train_loss = train(train_loader, model, optimizer)
# val_loss = validate(train_loader, model, optimizer)
save_best_model(
val_loss_hist.value, epoch, model, optimizer
)
save_model(epoch, model, optimizer)
save_loss_plot(OUTDIR, train_loss, val_loss)
# prog_bar = tqdm(train_loader, total=len(train_loader))
# for samples, targets in prog_bar:
# images = list(image.to(DEVICE) for image in samples)
#
# targets = [{k: v.to(DEVICE) for k, v in t.items()} for t in targets]
#
# loss_dict = model(images, targets)
#
# losses = sum(loss for loss in loss_dict.values())
# loss_value = losses.item()
#
# optimizer.zero_grad()
# losses.backward()
# optimizer.step()
#
# prog_bar.set_description(desc=f"Loss: {loss_value:.4f}")