efishSignalDetector/train.py
2023-10-24 08:56:35 +02:00

92 lines
2.8 KiB
Python

from confic import (DEVICE, NUM_CLASSES, NUM_EPOCHS, OUTDIR, NUM_WORKERS, TRAIN_DIR)
from model import create_model
from tqdm.auto import tqdm
from datasets import create_train_test_dataset, create_train_loader, create_valid_loader
from custom_utils import Averager, SaveBestModel, save_model, save_loss_plot
import torch
import matplotlib.pyplot as plt
import time
from IPython import embed
def train(train_loader, model, optimizer):
print('Training')
global train_loss_list
prog_bar = tqdm(train_loader, total=len(train_loader))
for samples, targets in prog_bar:
images = list(image.to(DEVICE) for image in samples)
targets = [{k: v.to(DEVICE) for k, v in t.items()} for t in targets]
loss_dict = model(images, targets)
losses = sum(loss for loss in loss_dict.values())
loss_value = losses.item()
train_loss_hist.send(loss_value) # this is a global instance !!!
train_loss_list.append(loss_value) # check what exactly this does !!!
optimizer.zero_grad()
losses.backward()
optimizer.step()
prog_bar.set_description(desc=f"Loss: {loss_value:.4f}")
return train_loss_list
if __name__ == '__main__':
train_data, test_data = create_train_test_dataset(TRAIN_DIR)
train_loader = create_train_loader(train_data)
test_loader = create_train_loader(test_data)
model = create_model(num_classes=NUM_CLASSES)
model = model.to(DEVICE)
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.001, momentum=0.9, weight_decay=0.0005)
train_loss_hist = Averager()
val_loss_hist = Averager()
# train_itr = 1
# val_itr = 1
train_loss_list = []
val_loss_list = []
save_best_model = SaveBestModel()
for epoch in range(NUM_EPOCHS):
train_loss_hist.reset()
val_loss_hist.reset()
train_loss = train(train_loader, model, optimizer)
# val_loss = validate(train_loader, model, optimizer)
save_best_model(
val_loss_hist.value, epoch, model, optimizer
)
save_model(epoch, model, optimizer)
save_loss_plot(OUTDIR, train_loss, val_loss)
# prog_bar = tqdm(train_loader, total=len(train_loader))
# for samples, targets in prog_bar:
# images = list(image.to(DEVICE) for image in samples)
#
# targets = [{k: v.to(DEVICE) for k, v in t.items()} for t in targets]
#
# loss_dict = model(images, targets)
#
# losses = sum(loss for loss in loss_dict.values())
# loss_value = losses.item()
#
# optimizer.zero_grad()
# losses.backward()
# optimizer.step()
#
# prog_bar.set_description(desc=f"Loss: {loss_value:.4f}")