training loop runs ... no feed it

This commit is contained in:
Till Raab 2023-10-23 15:26:39 +02:00
parent 3f66b4a39a
commit 30a9e71e76
4 changed files with 61 additions and 6 deletions

View File

@ -99,12 +99,19 @@ def bboxes_from_file(times_v, fish_freq, rise_idx, rise_size, fish_baseline_freq
Crise_size = rise_size_oi[enu]
Cblf = closest_baseline_freq[enu]
rise_end_t = times_v[(times_v > Ct_oi) & (fish_freq[id_idx] < Cblf + Crise_size * 0.37)]
rise_end_t = times_v[(times_v > Ct_oi) &
(fish_freq[id_idx] < Cblf + Crise_size * 0.37)]
if len(rise_end_t) == 0:
right_time_bound[enu] = np.nan
else:
right_time_bound[enu] = rise_end_t[0]
mask = (~np.isnan(right_time_bound) & ((right_time_bound - left_time_bound) > 1.))
left_time_bound = left_time_bound[mask]
right_time_bound = right_time_bound[mask]
lower_freq_bound = lower_freq_bound[mask]
upper_freq_bound = upper_freq_bound[mask]
dt_bbox = right_time_bound - left_time_bound
df_bbox = upper_freq_bound - lower_freq_bound
left_time_bound -= dt_bbox * 0.1
@ -154,7 +161,7 @@ def main(args):
for f in pd.unique(bbox_df['image']):
eval_files.append(f.split('__')[0])
folders = [args.folders]
folders = [args.folder]
for enu, folder in enumerate(folders):
print(f'DataSet generation from {folder} | {enu+1}/{len(folders)}')

View File

@ -39,11 +39,19 @@ class CustomDataset(Dataset):
Cbbox = self.bbox_df[self.bbox_df['image'] == image_name]
labels = np.ones(len(Cbbox), dtype=int)
boxes = Cbbox.loc[:, ['x0', 'x1', 'y0', 'y1']].values
boxes = torch.as_tensor(Cbbox.loc[:, ['x0', 'y0', 'x1', 'y1']].values, dtype=torch.float32)
area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
# no crowd instances
iscrowd = torch.zeros((boxes.shape[0],), dtype=torch.int64)
target = {}
target["boxes"] = boxes
target["labels"] = labels
target["labels"] = torch.as_tensor(labels, dtype=torch.int64)
target["area"] = area
target["iscrowd"] = iscrowd
image_id = torch.tensor([idx])
target["image_id"] = image_id
return img_tensor, target

View File

@ -23,6 +23,6 @@ def create_model(num_classes: int) -> torch.nn.Module:
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes+1)
return model

View File

@ -1,3 +1,43 @@
from confic import (DEVICE, NUM_CLASSES, NUM_EPOCHS, OUTDIR, NUM_WORKERS)
from confic import (DEVICE, NUM_CLASSES, NUM_EPOCHS, OUTDIR, NUM_WORKERS, TRAIN_DIR)
from model import create_model
from tqdm.auto import tqdm
from datasets import create_train_test_dataset, create_train_loader, create_valid_loader
import torch
import matplotlib.pyplot as plt
import time
from IPython import embed
if __name__ == '__main__':
train_data, test_data = create_train_test_dataset(TRAIN_DIR)
train_loader = create_train_loader(train_data)
test_loader = create_train_loader(test_data)
model = create_model(num_classes=1)
model = model.to(DEVICE)
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.001, momentum=0.9, weight_decay=0.0005)
for epoch in range(NUM_EPOCHS):
prog_bar = tqdm(train_loader, total=len(train_loader))
for samples, targets in prog_bar:
images = list(image.to(DEVICE) for image in samples)
targets = [{k: v.to(DEVICE) for k, v in t.items()} for t in targets]
try:
loss_dict = model(images, targets)
except:
embed()
quit()
losses = sum(loss for loss in loss_dict.values())
loss_value = losses.item()
optimizer.zero_grad()
losses.backward()
optimizer.step()
prog_bar.set_description(desc=f"Loss: {loss_value:.4f}")