Merge branch 'main' of https://whale.am28.uni-tuebingen.de/git/mbergmann/gpgrewe2024
This commit is contained in:
commit
ddb64df455
192
code/GP_Code.py
Normal file
192
code/GP_Code.py
Normal file
@ -0,0 +1,192 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Thu Oct 17 09:23:10 2024
|
||||
|
||||
@author: diana
|
||||
"""
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import glob
|
||||
import os
|
||||
import rlxnix as rlx
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import scipy.signal as sig
|
||||
from scipy.integrate import quad
|
||||
|
||||
|
||||
### FUNCTIONS ###
|
||||
def binary_spikes(spike_times, duration, dt):
|
||||
""" Converts the spike times to a binary representation.
|
||||
Zeros when there is no spike, One when there is.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
spike_times : np.array
|
||||
The spike times.
|
||||
duration : float
|
||||
The trial duration.
|
||||
dt : float
|
||||
the temporal resolution.
|
||||
|
||||
Returns
|
||||
-------
|
||||
binary : np.array
|
||||
The binary representation of the spike times.
|
||||
|
||||
"""
|
||||
binary = np.zeros(int(np.round(duration / dt))) #Vektor, der genauso lang ist wie die stim time
|
||||
spike_indices = np.asarray(np.round(spike_times / dt), dtype=int)
|
||||
binary[spike_indices] = 1
|
||||
return binary
|
||||
|
||||
|
||||
def firing_rate(binary_spikes, box_width, dt=0.000025):
|
||||
"""Calculate the firing rate from binary spike data.
|
||||
|
||||
This function computes the firing rate using a boxcar (moving average)
|
||||
filter of a specified width.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
binary_spikes : np.array
|
||||
A binary array representing spike occurrences.
|
||||
box_width : float
|
||||
The width of the box filter in seconds.
|
||||
dt : float, optional
|
||||
The temporal resolution (time step) in seconds. Default is 0.000025 seconds.
|
||||
|
||||
Returns
|
||||
-------
|
||||
rate : np.array
|
||||
An array representing the firing rate at each time step.
|
||||
"""
|
||||
box = np.ones(int(box_width // dt))
|
||||
box /= np.sum(box) * dt #Normalization of box kernel to an integral of 1
|
||||
rate = np.convolve(binary_spikes, box, mode="same")
|
||||
return rate
|
||||
|
||||
|
||||
def powerspectrum(rate, dt):
|
||||
"""Compute the power spectrum of a given firing rate.
|
||||
|
||||
This function calculates the power spectrum using the Welch method.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
rate : np.array
|
||||
An array of firing rates.
|
||||
dt : float
|
||||
The temporal resolution (time step) in seconds.
|
||||
|
||||
Returns
|
||||
-------
|
||||
frequency : np.array
|
||||
An array of frequencies corresponding to the power values.
|
||||
power : np.array
|
||||
An array of power spectral density values.
|
||||
"""
|
||||
frequency, power = sig.welch(rate, fs=1/dt, nperseg=2**15, noverlap=2**14)
|
||||
return frequency, power
|
||||
|
||||
|
||||
def prepare_harmonics(frequencies, categories, num_harmonics, colors):
|
||||
points_categories = {}
|
||||
for idx, (freq, category) in enumerate(zip(frequencies, categories)):
|
||||
points_categories[category] = [freq * (i + 1) for i in range(num_harmonics[idx])]
|
||||
|
||||
points = [p for harmonics in points_categories.values() for p in harmonics]
|
||||
color_mapping = {category: colors[idx] for idx, category in enumerate(categories)}
|
||||
|
||||
return points, color_mapping, points_categories
|
||||
|
||||
|
||||
def plot_power_spectrum_with_integrals(frequency, power, points, delta, color_mapping, points_categories):
|
||||
"""Create a figure of the power spectrum with integrals highlighted around specified points.
|
||||
|
||||
This function creates a plot of the power spectrum and shades areas around
|
||||
specified harmonic points to indicate the calculated integrals.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
frequency : np.array
|
||||
An array of frequencies corresponding to the power values.
|
||||
power : np.array
|
||||
An array of power spectral density values.
|
||||
points : list
|
||||
A list of harmonic frequencies to highlight.
|
||||
delta : float
|
||||
Half-width of the range for integration around each point.
|
||||
color_mapping : dict
|
||||
A mapping of point categories to colors.
|
||||
points_categories : dict
|
||||
A mapping of categories to lists of points.
|
||||
|
||||
Returns
|
||||
-------
|
||||
fig : matplotlib.figure.Figure
|
||||
The created figure object.
|
||||
"""
|
||||
fig, ax = plt.subplots()
|
||||
ax.plot(frequency, power)
|
||||
integrals = []
|
||||
|
||||
for point in points:
|
||||
indices = (frequency >= point - delta) & (frequency <= point + delta)
|
||||
integral = np.trapz(power[indices], frequency[indices])
|
||||
integrals.append(integral)
|
||||
|
||||
# Get color based on point category
|
||||
color = next((c for cat, c in color_mapping.items() if point in points_categories[cat]), 'gray')
|
||||
ax.axvspan(point - delta, point + delta, color=color, alpha=0.3, label=f'{point:.2f} Hz')
|
||||
print(f"Integral around {point:.2f} Hz: {integral:.5e}")
|
||||
|
||||
ax.set_xlim([0, 1200])
|
||||
ax.set_xlabel('Frequency (Hz)')
|
||||
ax.set_ylabel('Power')
|
||||
ax.set_title('Power Spectrum with marked Integrals')
|
||||
ax.legend()
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
|
||||
|
||||
### Data retrieval ###
|
||||
datafolder = "../data" # Geht in der Hierarchie einen Ordern nach oben (..) und dann in den Ordner 'data'
|
||||
example_file = os.path.join("..", "data", "2024-10-16-ad-invivo-1.nix")
|
||||
dataset = rlx.Dataset(example_file)
|
||||
sams = dataset.repro_runs("SAM")
|
||||
sam = sams[2]
|
||||
|
||||
## Daten für Funktionen
|
||||
df = sam.metadata["RePro-Info"]["settings"]["deltaf"][0][0]
|
||||
stim = sam.stimuli[1]
|
||||
potential, time = stim.trace_data("V-1")
|
||||
spikes, _ = stim.trace_data("Spikes-1")
|
||||
duration = stim.duration
|
||||
dt = stim.trace_info("V-1").sampling_interval
|
||||
|
||||
|
||||
### Anwendung Functionen ###
|
||||
b = binary_spikes(spikes, duration, dt)
|
||||
rate = firing_rate(b, box_width=0.05, dt=dt)
|
||||
frequency, power = powerspectrum(b, dt)
|
||||
|
||||
## Important stuff
|
||||
eodf = stim.metadata[stim.name]["EODf"][0][0]
|
||||
stimulus_frequency = eodf + df
|
||||
AM = 50 # Hz
|
||||
#print(f"EODf: {eodf}, Stimulus Frequency: {stimulus_frequency}, AM: {AM}")
|
||||
|
||||
frequencies = [AM, eodf, stimulus_frequency]
|
||||
categories = ["AM", "EODf", "Stimulus frequency"]
|
||||
num_harmonics = [4, 2, 2]
|
||||
colors = ["green", "orange", "red"]
|
||||
delta = 2.5
|
||||
|
||||
|
||||
### Peaks im Powerspektrum finden ###
|
||||
points, color_mapping, points_categories = prepare_harmonics(frequencies, categories, num_harmonics, colors)
|
||||
fig = plot_power_spectrum_with_integrals(frequency, power, points, delta, color_mapping, points_categories)
|
||||
plt.show()
|
154
code/analysis_1.py
Normal file
154
code/analysis_1.py
Normal file
@ -0,0 +1,154 @@
|
||||
import rlxnix as rlx
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import os
|
||||
from scipy.signal import welch
|
||||
|
||||
# close all currently open figures
|
||||
plt.close('all')
|
||||
|
||||
'''FUNCTIONS'''
|
||||
def plot_vt_spikes(t, v, spike_t):
|
||||
fig = plt.figure(figsize=(5, 2.5))
|
||||
# alternative to ax = axs[0]
|
||||
ax = fig.add_subplot()
|
||||
# plot vt diagram
|
||||
ax.plot(t[t<0.1], v[t<0.1])
|
||||
# plot spikes into vt diagram, at max V
|
||||
ax.scatter(spike_t[spike_t<0.1], np.ones_like(spike_t[spike_t<0.1]) * np.max(v))
|
||||
plt.show()
|
||||
|
||||
def scatter_plot(colormap, stimuli_list, stimulus_count):
|
||||
'''plot scatter plot for one sam with all 3 stims'''
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot()
|
||||
|
||||
ax.eventplot(stimuli_list, colors=colormap)
|
||||
ax.set_xlabel('Spike Times [ms]')
|
||||
ax.set_ylabel('Loop #')
|
||||
ax.set_yticks(range(stimulus_count))
|
||||
ax.set_title('Spikes of SAM 3')
|
||||
plt.show()
|
||||
|
||||
# create binary array with ones for spike times
|
||||
def binary_spikes(spike_times, duration , dt):
|
||||
'''Converts spike times to binary representation
|
||||
Params
|
||||
------
|
||||
spike_times: np.array
|
||||
spike times
|
||||
duration: float
|
||||
trial duration
|
||||
dt: float
|
||||
temporal resolution
|
||||
|
||||
Returns
|
||||
--------
|
||||
binary: np.array
|
||||
The binary representation of the spike times
|
||||
'''
|
||||
binary = np.zeros(int(duration//dt)) # // is truncated division, returns number w/o decimals, same as np.round
|
||||
spike_indices = np.asarray(np.round(spike_times//dt), dtype=int)
|
||||
binary[spike_indices] = 1
|
||||
return binary
|
||||
|
||||
# function to plot psth
|
||||
def firing_rates(binary_spikes, box_width=0.01, dt=0.000025):
|
||||
box = np.ones(int(box_width // dt))
|
||||
box /= np.sum(box * dt) # normalize box kernel w interal of 1
|
||||
rate = np.convolve(binary_spikes, box, mode='same')
|
||||
return rate
|
||||
|
||||
def power_spectrum(rate, dt):
|
||||
f, p = welch(rate, fs = 1./dt, nperseg=2**16, noverlap=2**15)
|
||||
# algorithm makes rounding mistakes, we want to calc many spectra and take mean of those
|
||||
# nperseg: length of segments in # datapoints
|
||||
# noverlap: # datapoints that overlap in segments
|
||||
return f, p
|
||||
|
||||
def power_spectrum_plot(f, p):
|
||||
# plot power spectrum
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot()
|
||||
ax.plot(freq, power)
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [1/Hz]')
|
||||
ax.set_xlim(0, 1000)
|
||||
plt.show()
|
||||
|
||||
'''IMPORT DATA'''
|
||||
datafolder = '../data' #./ wo ich gerade bin; ../ eine ebene höher; ../../ zwei ebenen höher
|
||||
|
||||
example_file = os.path.join('..', 'data', '2024-10-16-ac-invivo-1.nix')
|
||||
|
||||
'''EXTRACT DATA'''
|
||||
dataset = rlx.Dataset(example_file)
|
||||
|
||||
# get sams
|
||||
sams = dataset.repro_runs('SAM')
|
||||
sam = sams[2]
|
||||
|
||||
# get potetial over time (vt curve)
|
||||
potential, time = sam.trace_data('V-1')
|
||||
|
||||
# get spike times
|
||||
spike_times, _ = sam.trace_data('Spikes-1')
|
||||
|
||||
# get stim count
|
||||
stim_count = sam.stimulus_count
|
||||
|
||||
# extract spike times of all 3 loops of current sam
|
||||
stimuli = []
|
||||
for i in range(stim_count):
|
||||
# get stim i from sam
|
||||
stim = sam.stimuli[i]
|
||||
potential_stim, time_stim = stim.trace_data('V-1')
|
||||
# get spike_times
|
||||
spike_times_stim, _ = stim.trace_data('Spikes-1')
|
||||
stimuli.append(spike_times_stim)
|
||||
|
||||
eodf = stim.metadata[stim.name]['EODF'][0][0]
|
||||
df = stim.metadata['RePro-Info']['settings']['deltaf'][0][0]
|
||||
stimulus_freq = df + eodf
|
||||
|
||||
'''PLOT'''
|
||||
# create colormap
|
||||
colors = plt.cm.prism(np.linspace(0, 1, stim_count))
|
||||
|
||||
# timeline of whole rec
|
||||
dataset.plot_timeline()
|
||||
|
||||
# voltage and spikes of current sam
|
||||
plot_vt_spikes(time, potential, spike_times)
|
||||
|
||||
# spike times of all loops
|
||||
scatter_plot(colors, stimuli, stim_count)
|
||||
|
||||
|
||||
'''POWER SPECTRUM'''
|
||||
# define variables for binary spikes function
|
||||
spikes, _ = stim.trace_data('Spikes-1')
|
||||
ti = stim.trace_info('V-1')
|
||||
dt = ti.sampling_interval
|
||||
duration = stim.duration
|
||||
|
||||
### spectrum
|
||||
# vector with binary values for wholes length of stim
|
||||
binary = binary_spikes(spikes, duration, dt)
|
||||
|
||||
# calculate firing rate
|
||||
rate = firing_rates(binary, 0.01, dt) # box width of 10 ms
|
||||
|
||||
# plot psth or whatever
|
||||
# plt.plot(time_stim, rate)
|
||||
# plt.show()
|
||||
|
||||
freq, power = power_spectrum(binary, dt)
|
||||
|
||||
power_spectrum_plot(freq, power)
|
||||
|
||||
|
||||
### TODO:
|
||||
# then loop over sams/dfs, all stims, intensities
|
||||
# when does stim start in eodf/ at which phase and how does that influence our signal --> alignment problem: egal wenn wir spectren haben
|
||||
# we want to see peaks at phase locking to own and stim frequency, and at amp modulation frequency
|
194
code/test.py
Normal file
194
code/test.py
Normal file
@ -0,0 +1,194 @@
|
||||
import glob
|
||||
import pathlib
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import rlxnix as rlx
|
||||
from IPython import embed
|
||||
from scipy.signal import welch
|
||||
|
||||
def binary_spikes(spike_times, duration, dt):
|
||||
"""
|
||||
Converts the spike times to a binary representations
|
||||
|
||||
Parameters
|
||||
----------
|
||||
spike_times : np.array
|
||||
The spike times.
|
||||
duration : float
|
||||
The trial duration:
|
||||
dt : float
|
||||
The temporal resolution.
|
||||
|
||||
Returns
|
||||
-------
|
||||
binary : np.array
|
||||
The binary representation of the spike train.
|
||||
|
||||
"""
|
||||
binary = np.zeros(int(np.round(duration / dt))) #create the binary array with the same length as potential
|
||||
|
||||
spike_indices = np.asarray(np.round(spike_times / dt), dtype = int) # get the indices
|
||||
binary[spike_indices] = 1 # put the indices into binary
|
||||
return binary
|
||||
|
||||
def firing_rate(binary_spikes, dt = 0.000025, box_width = 0.01):
|
||||
box = np.ones(int(box_width // dt))
|
||||
box /= np.sum(box) * dt # normalisierung des box kernels to an integral of one
|
||||
rate = np.convolve(binary_spikes, box, mode = 'same')
|
||||
return rate
|
||||
|
||||
def power_spectrum(rate, dt):
|
||||
freq, power = welch(rate, fs = 1/dt, nperseg = 2**16, noverlap = 2**15)
|
||||
return freq, power
|
||||
|
||||
def extract_stim_data(stimulus):
|
||||
'''
|
||||
extracts all necessary metadata for each stimulus
|
||||
|
||||
Parameters
|
||||
----------
|
||||
stimulus : Stimulus object or rlxnix.base.repro module
|
||||
The stimulus from which the data is needed.
|
||||
|
||||
Returns
|
||||
-------
|
||||
amplitude : float
|
||||
The relative signal amplitude in percent.
|
||||
df : float
|
||||
Distance of the stimulus to the current EODf.
|
||||
eodf : float
|
||||
Current EODf.
|
||||
stim_freq : float
|
||||
The total stimulus frequency (EODF+df).
|
||||
amp_mod : float
|
||||
The current amplitude modulation.
|
||||
ny_freq : float
|
||||
The current nyquist frequency.
|
||||
|
||||
'''
|
||||
# extract metadata
|
||||
# the stim.name adjusts the first key as it changes with every stimulus
|
||||
amplitude = stim.metadata[stim.name]['Contrast'][0][0]
|
||||
df = stim.metadata[stim.name]['DeltaF'][0][0]
|
||||
eodf = round(stim.metadata[stim.name]['EODf'][0][0])
|
||||
stim_freq = round(stim.metadata[stim.name]['Frequency'][0][0])
|
||||
# calculates the amplitude modulation
|
||||
amp_mod, ny_freq = AM(eodf, stim_freq)
|
||||
return amplitude, df, eodf, stim_freq, amp_mod, ny_freq
|
||||
|
||||
def AM(EODf, stimulus):
|
||||
"""
|
||||
Calculates the Amplitude Modulation and Nyquist frequency
|
||||
|
||||
Parameters
|
||||
----------
|
||||
EODf : float or int
|
||||
The current EODf.
|
||||
stimulus : float or int
|
||||
The absolute frequency of the stimulus.
|
||||
|
||||
Returns
|
||||
-------
|
||||
AM : float
|
||||
The amplitude modulation resulting from the stimulus.
|
||||
nyquist : float
|
||||
The maximum frequency possible to resolve with the EODf.
|
||||
|
||||
"""
|
||||
nyquist = EODf * 0.5
|
||||
AM = np.mod(stimulus, nyquist)
|
||||
return AM, nyquist
|
||||
|
||||
def remove_poor(files):
|
||||
"""
|
||||
Removes poor datasets from the set of files for analysis
|
||||
|
||||
Parameters
|
||||
----------
|
||||
files : list
|
||||
list of files.
|
||||
|
||||
Returns
|
||||
-------
|
||||
good_files : list
|
||||
list of files without the ones with the label poor.
|
||||
|
||||
"""
|
||||
# create list for good files
|
||||
good_files = []
|
||||
# loop over files
|
||||
for i in range(len(files)):
|
||||
# print(files[i])
|
||||
# load the file (takes some time)
|
||||
data = rlx.Dataset(files[i])
|
||||
# get the quality
|
||||
quality = str.lower(data.metadata["Recording"]["Recording quality"][0][0])
|
||||
# check the quality
|
||||
if quality != "poor":
|
||||
# if its good or fair add it to the good files
|
||||
good_files.append(files[i])
|
||||
return good_files
|
||||
|
||||
#find example data
|
||||
datafolder = "../../data"
|
||||
|
||||
example_file = datafolder + "/" + "2024-10-16-ah-invivo-1.nix"
|
||||
|
||||
data_files = glob.glob("../../data/*.nix")
|
||||
|
||||
#load dataset
|
||||
dataset = rlx.Dataset(example_file)
|
||||
# find all sams
|
||||
sams = dataset.repro_runs('SAM')
|
||||
sam = sams[2] # our example sam
|
||||
potential,time = sam.trace_data("V-1") #membrane potential
|
||||
spike_times, _ = sam.trace_data('Spikes-1') #spike times
|
||||
df = sam.metadata['RePro-Info']['settings']['deltaf'][0][0] #find df in metadata
|
||||
amp = sam.metadata['RePro-Info']['settings']['contrast'][0][0] * 100 #find amplitude in metadata
|
||||
|
||||
#figure for a quick plot
|
||||
fig = plt.figure(figsize = (5, 2.5))
|
||||
ax = fig.add_subplot()
|
||||
ax.plot(time[time < 0.1], potential[time < 0.1]) # plot the membrane potential in 0.1s
|
||||
ax.scatter(spike_times[spike_times < 0.1],
|
||||
np.ones_like(spike_times[spike_times < 0.1]) * np.max(potential)) #plot teh spike times on top
|
||||
plt.show()
|
||||
plt.close()
|
||||
# get all the stimuli
|
||||
stims = sam.stimuli
|
||||
# empty list for the spike times
|
||||
spikes = []
|
||||
#spikes2 = np.array(range(len(stims)))
|
||||
# loop over the stimuli
|
||||
for stim in stims:
|
||||
# get the spike times
|
||||
spike, _ = stim.trace_data('Spikes-1')
|
||||
# append the first 100ms to spikes
|
||||
spikes.append(spike[spike < 0.1])
|
||||
# get stimulus duration
|
||||
duration = stim.duration
|
||||
ti = stim.trace_info("V-1")
|
||||
dt = ti.sampling_interval # get the stimulus interval
|
||||
bin_spikes = binary_spikes(spike, duration, dt) #binarize the spike_times
|
||||
print(len(bin_spikes))
|
||||
pot,tim= stim.trace_data("V-1") #membrane potential
|
||||
rate = firing_rate(bin_spikes, dt = dt)
|
||||
print(np.mean(rate))
|
||||
fig, [ax1, ax2] = plt.subplots(1, 2,layout = 'constrained')
|
||||
ax1.plot(tim,rate)
|
||||
ax1.set_ylim(0,600)
|
||||
ax1.set_xlim(0, 0.04)
|
||||
freq, power = power_spectrum(rate, dt)
|
||||
ax2.plot(freq,power)
|
||||
ax2.set_xlim(0,1000)
|
||||
plt.close()
|
||||
if stim == stims[-1]:
|
||||
amplitude, df, eodf, stim_freq = extract_stim_data(stim)
|
||||
print(amplitude, df, eodf, stim_freq)
|
||||
|
||||
# make an eventplot
|
||||
fig = plt.figure(figsize = (5, 3), layout = 'constrained')
|
||||
ax = fig.add_subplot()
|
||||
ax.eventplot(spikes, linelength = 0.8)
|
||||
ax.set_xlabel('time [ms]')
|
||||
ax.set_ylabel('loop no.')
|
173
code/useful_functions.py
Normal file
173
code/useful_functions.py
Normal file
@ -0,0 +1,173 @@
|
||||
import glob
|
||||
import pathlib
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import rlxnix as rlx
|
||||
from IPython import embed
|
||||
from scipy.signal import welch
|
||||
|
||||
def AM(EODf, stimulus):
|
||||
"""
|
||||
Calculates the Amplitude Modulation and Nyquist frequency
|
||||
|
||||
Parameters
|
||||
----------
|
||||
EODf : float or int
|
||||
The current EODf.
|
||||
stimulus : float or int
|
||||
The absolute frequency of the stimulus.
|
||||
|
||||
Returns
|
||||
-------
|
||||
AM : float
|
||||
The amplitude modulation resulting from the stimulus.
|
||||
nyquist : float
|
||||
The maximum frequency possible to resolve with the EODf.
|
||||
|
||||
"""
|
||||
nyquist = EODf * 0.5
|
||||
AM = np.mod(stimulus, nyquist)
|
||||
return AM, nyquist
|
||||
|
||||
def binary_spikes(spike_times, duration, dt):
|
||||
"""
|
||||
Converts the spike times to a binary representations
|
||||
|
||||
Parameters
|
||||
----------
|
||||
spike_times : np.array
|
||||
The spike times.
|
||||
duration : float
|
||||
The trial duration:
|
||||
dt : float
|
||||
The temporal resolution.
|
||||
|
||||
Returns
|
||||
-------
|
||||
binary : np.array
|
||||
The binary representation of the spike train.
|
||||
|
||||
"""
|
||||
binary = np.zeros(int(np.round(duration / dt))) #create the binary array with the same length as potential
|
||||
|
||||
spike_indices = np.asarray(np.round(spike_times / dt), dtype = int) # get the indices
|
||||
binary[spike_indices] = 1 # put the indices into binary
|
||||
return binary
|
||||
|
||||
def extract_stim_data(stimulus):
|
||||
'''
|
||||
extracts all necessary metadata for each stimulus
|
||||
|
||||
Parameters
|
||||
----------
|
||||
stimulus : Stimulus object or rlxnix.base.repro module
|
||||
The stimulus from which the data is needed.
|
||||
|
||||
Returns
|
||||
-------
|
||||
amplitude : float
|
||||
The relative signal amplitude in percent.
|
||||
df : float
|
||||
Distance of the stimulus to the current EODf.
|
||||
eodf : float
|
||||
Current EODf.
|
||||
stim_freq : float
|
||||
The total stimulus frequency (EODF+df).
|
||||
amp_mod : float
|
||||
The current amplitude modulation.
|
||||
ny_freq : float
|
||||
The current nyquist frequency.
|
||||
|
||||
'''
|
||||
# extract metadata
|
||||
# the stim.name adjusts the first key as it changes with every stimulus
|
||||
amplitude = stimulus.metadata[stimulus.name]['Contrast'][0][0]
|
||||
df = stimulus.metadata[stimulus.name]['DeltaF'][0][0]
|
||||
eodf = round(stimulus.metadata[stimulus.name]['EODf'][0][0])
|
||||
stim_freq = round(stimulus.metadata[stimulus.name]['Frequency'][0][0])
|
||||
# calculates the amplitude modulation
|
||||
amp_mod, ny_freq = AM(eodf, stim_freq)
|
||||
return amplitude, df, eodf, stim_freq, amp_mod, ny_freq
|
||||
|
||||
def firing_rate(binary_spikes, dt = 0.000025, box_width = 0.01):
|
||||
'''
|
||||
Calculates the firing rate from binary spikes
|
||||
|
||||
Parameters
|
||||
----------
|
||||
binary_spikes : np.array
|
||||
The binary representation of the spike train.
|
||||
dt : float, optional
|
||||
Time difference between two datapoints. The default is 0.000025.
|
||||
box_width : float, optional
|
||||
Time window on which the rate should be computed on. The default is 0.01.
|
||||
|
||||
Returns
|
||||
-------
|
||||
rate : np.array
|
||||
Array of firing rates.
|
||||
|
||||
'''
|
||||
box = np.ones(int(box_width // dt))
|
||||
box /= np.sum(box) * dt # normalisierung des box kernels to an integral of one
|
||||
rate = np.convolve(binary_spikes, box, mode = 'same')
|
||||
return rate
|
||||
|
||||
def power_spectrum(spike_times, duration, dt):
|
||||
'''
|
||||
Computes a power spectrum based on the spike times
|
||||
|
||||
Parameters
|
||||
----------
|
||||
spike_times : np.array
|
||||
The spike times.
|
||||
duration : float
|
||||
The trial duration:
|
||||
dt : float
|
||||
The temporal resolution.
|
||||
|
||||
Returns
|
||||
-------
|
||||
freq : np.array
|
||||
All the frequencies of the power spectrum.
|
||||
power : np.array
|
||||
Power of the frequencies calculated.
|
||||
|
||||
'''
|
||||
# binarizes spikes
|
||||
binary = binary_spikes(spike_times, duration, dt)
|
||||
# computes firing rates
|
||||
rate = firing_rate(binary, dt = dt)
|
||||
# creates power spectrum
|
||||
freq, power = welch(rate, fs = 1/dt, nperseg = 2**16, noverlap = 2**15)
|
||||
return freq, power
|
||||
|
||||
def remove_poor(files):
|
||||
"""
|
||||
Removes poor datasets from the set of files for analysis
|
||||
|
||||
Parameters
|
||||
----------
|
||||
files : list
|
||||
list of files.
|
||||
|
||||
Returns
|
||||
-------
|
||||
good_files : list
|
||||
list of files without the ones with the label poor.
|
||||
|
||||
"""
|
||||
# create list for good files
|
||||
good_files = []
|
||||
# loop over files
|
||||
for i in range(len(files)):
|
||||
# print(files[i])
|
||||
# load the file (takes some time)
|
||||
data = rlx.Dataset(files[i])
|
||||
# get the quality
|
||||
quality = str.lower(data.metadata["Recording"]["Recording quality"][0][0])
|
||||
# check the quality
|
||||
if quality != "poor":
|
||||
# if its good or fair add it to the good files
|
||||
good_files.append(files[i])
|
||||
return good_files
|
Loading…
Reference in New Issue
Block a user