diff --git a/code/GP_Code.py b/code/GP_Code.py new file mode 100644 index 0000000..754715e --- /dev/null +++ b/code/GP_Code.py @@ -0,0 +1,192 @@ +# -*- coding: utf-8 -*- +""" +Created on Thu Oct 17 09:23:10 2024 + +@author: diana +""" +# -*- coding: utf-8 -*- + +import glob +import os +import rlxnix as rlx +import numpy as np +import matplotlib.pyplot as plt +import scipy.signal as sig +from scipy.integrate import quad + + +### FUNCTIONS ### +def binary_spikes(spike_times, duration, dt): + """ Converts the spike times to a binary representation. + Zeros when there is no spike, One when there is. + + Parameters + ---------- + spike_times : np.array + The spike times. + duration : float + The trial duration. + dt : float + the temporal resolution. + + Returns + ------- + binary : np.array + The binary representation of the spike times. + + """ + binary = np.zeros(int(np.round(duration / dt))) #Vektor, der genauso lang ist wie die stim time + spike_indices = np.asarray(np.round(spike_times / dt), dtype=int) + binary[spike_indices] = 1 + return binary + + +def firing_rate(binary_spikes, box_width, dt=0.000025): + """Calculate the firing rate from binary spike data. + + This function computes the firing rate using a boxcar (moving average) + filter of a specified width. + + Parameters + ---------- + binary_spikes : np.array + A binary array representing spike occurrences. + box_width : float + The width of the box filter in seconds. + dt : float, optional + The temporal resolution (time step) in seconds. Default is 0.000025 seconds. + + Returns + ------- + rate : np.array + An array representing the firing rate at each time step. + """ + box = np.ones(int(box_width // dt)) + box /= np.sum(box) * dt #Normalization of box kernel to an integral of 1 + rate = np.convolve(binary_spikes, box, mode="same") + return rate + + +def powerspectrum(rate, dt): + """Compute the power spectrum of a given firing rate. + + This function calculates the power spectrum using the Welch method. + + Parameters + ---------- + rate : np.array + An array of firing rates. + dt : float + The temporal resolution (time step) in seconds. + + Returns + ------- + frequency : np.array + An array of frequencies corresponding to the power values. + power : np.array + An array of power spectral density values. + """ + frequency, power = sig.welch(rate, fs=1/dt, nperseg=2**15, noverlap=2**14) + return frequency, power + + +def prepare_harmonics(frequencies, categories, num_harmonics, colors): + points_categories = {} + for idx, (freq, category) in enumerate(zip(frequencies, categories)): + points_categories[category] = [freq * (i + 1) for i in range(num_harmonics[idx])] + + points = [p for harmonics in points_categories.values() for p in harmonics] + color_mapping = {category: colors[idx] for idx, category in enumerate(categories)} + + return points, color_mapping, points_categories + + +def plot_power_spectrum_with_integrals(frequency, power, points, delta, color_mapping, points_categories): + """Create a figure of the power spectrum with integrals highlighted around specified points. + + This function creates a plot of the power spectrum and shades areas around + specified harmonic points to indicate the calculated integrals. + + Parameters + ---------- + frequency : np.array + An array of frequencies corresponding to the power values. + power : np.array + An array of power spectral density values. + points : list + A list of harmonic frequencies to highlight. + delta : float + Half-width of the range for integration around each point. + color_mapping : dict + A mapping of point categories to colors. + points_categories : dict + A mapping of categories to lists of points. + + Returns + ------- + fig : matplotlib.figure.Figure + The created figure object. + """ + fig, ax = plt.subplots() + ax.plot(frequency, power) + integrals = [] + + for point in points: + indices = (frequency >= point - delta) & (frequency <= point + delta) + integral = np.trapz(power[indices], frequency[indices]) + integrals.append(integral) + + # Get color based on point category + color = next((c for cat, c in color_mapping.items() if point in points_categories[cat]), 'gray') + ax.axvspan(point - delta, point + delta, color=color, alpha=0.3, label=f'{point:.2f} Hz') + print(f"Integral around {point:.2f} Hz: {integral:.5e}") + + ax.set_xlim([0, 1200]) + ax.set_xlabel('Frequency (Hz)') + ax.set_ylabel('Power') + ax.set_title('Power Spectrum with marked Integrals') + ax.legend() + + return fig + + + + +### Data retrieval ### +datafolder = "../data" # Geht in der Hierarchie einen Ordern nach oben (..) und dann in den Ordner 'data' +example_file = os.path.join("..", "data", "2024-10-16-ad-invivo-1.nix") +dataset = rlx.Dataset(example_file) +sams = dataset.repro_runs("SAM") +sam = sams[2] + +## Daten für Funktionen +df = sam.metadata["RePro-Info"]["settings"]["deltaf"][0][0] +stim = sam.stimuli[1] +potential, time = stim.trace_data("V-1") +spikes, _ = stim.trace_data("Spikes-1") +duration = stim.duration +dt = stim.trace_info("V-1").sampling_interval + + +### Anwendung Functionen ### +b = binary_spikes(spikes, duration, dt) +rate = firing_rate(b, box_width=0.05, dt=dt) +frequency, power = powerspectrum(b, dt) + +## Important stuff +eodf = stim.metadata[stim.name]["EODf"][0][0] +stimulus_frequency = eodf + df +AM = 50 # Hz +#print(f"EODf: {eodf}, Stimulus Frequency: {stimulus_frequency}, AM: {AM}") + +frequencies = [AM, eodf, stimulus_frequency] +categories = ["AM", "EODf", "Stimulus frequency"] +num_harmonics = [4, 2, 2] +colors = ["green", "orange", "red"] +delta = 2.5 + + +### Peaks im Powerspektrum finden ### +points, color_mapping, points_categories = prepare_harmonics(frequencies, categories, num_harmonics, colors) +fig = plot_power_spectrum_with_integrals(frequency, power, points, delta, color_mapping, points_categories) +plt.show() diff --git a/code/analysis_1.py b/code/analysis_1.py new file mode 100644 index 0000000..17fb46b --- /dev/null +++ b/code/analysis_1.py @@ -0,0 +1,154 @@ +import rlxnix as rlx +import numpy as np +import matplotlib.pyplot as plt +import os +from scipy.signal import welch + +# close all currently open figures +plt.close('all') + +'''FUNCTIONS''' +def plot_vt_spikes(t, v, spike_t): + fig = plt.figure(figsize=(5, 2.5)) + # alternative to ax = axs[0] + ax = fig.add_subplot() + # plot vt diagram + ax.plot(t[t<0.1], v[t<0.1]) + # plot spikes into vt diagram, at max V + ax.scatter(spike_t[spike_t<0.1], np.ones_like(spike_t[spike_t<0.1]) * np.max(v)) + plt.show() + +def scatter_plot(colormap, stimuli_list, stimulus_count): + '''plot scatter plot for one sam with all 3 stims''' + fig = plt.figure() + ax = fig.add_subplot() + + ax.eventplot(stimuli_list, colors=colormap) + ax.set_xlabel('Spike Times [ms]') + ax.set_ylabel('Loop #') + ax.set_yticks(range(stimulus_count)) + ax.set_title('Spikes of SAM 3') + plt.show() + +# create binary array with ones for spike times +def binary_spikes(spike_times, duration , dt): + '''Converts spike times to binary representation + Params + ------ + spike_times: np.array + spike times + duration: float + trial duration + dt: float + temporal resolution + + Returns + -------- + binary: np.array + The binary representation of the spike times + ''' + binary = np.zeros(int(duration//dt)) # // is truncated division, returns number w/o decimals, same as np.round + spike_indices = np.asarray(np.round(spike_times//dt), dtype=int) + binary[spike_indices] = 1 + return binary + +# function to plot psth +def firing_rates(binary_spikes, box_width=0.01, dt=0.000025): + box = np.ones(int(box_width // dt)) + box /= np.sum(box * dt) # normalize box kernel w interal of 1 + rate = np.convolve(binary_spikes, box, mode='same') + return rate + +def power_spectrum(rate, dt): + f, p = welch(rate, fs = 1./dt, nperseg=2**16, noverlap=2**15) + # algorithm makes rounding mistakes, we want to calc many spectra and take mean of those + # nperseg: length of segments in # datapoints + # noverlap: # datapoints that overlap in segments + return f, p + +def power_spectrum_plot(f, p): + # plot power spectrum + fig = plt.figure() + ax = fig.add_subplot() + ax.plot(freq, power) + ax.set_xlabel('Frequency [Hz]') + ax.set_ylabel('Power [1/Hz]') + ax.set_xlim(0, 1000) + plt.show() + +'''IMPORT DATA''' +datafolder = '../data' #./ wo ich gerade bin; ../ eine ebene höher; ../../ zwei ebenen höher + +example_file = os.path.join('..', 'data', '2024-10-16-ac-invivo-1.nix') + +'''EXTRACT DATA''' +dataset = rlx.Dataset(example_file) + +# get sams +sams = dataset.repro_runs('SAM') +sam = sams[2] + +# get potetial over time (vt curve) +potential, time = sam.trace_data('V-1') + +# get spike times +spike_times, _ = sam.trace_data('Spikes-1') + +# get stim count +stim_count = sam.stimulus_count + +# extract spike times of all 3 loops of current sam +stimuli = [] +for i in range(stim_count): + # get stim i from sam + stim = sam.stimuli[i] + potential_stim, time_stim = stim.trace_data('V-1') + # get spike_times + spike_times_stim, _ = stim.trace_data('Spikes-1') + stimuli.append(spike_times_stim) + +eodf = stim.metadata[stim.name]['EODF'][0][0] +df = stim.metadata['RePro-Info']['settings']['deltaf'][0][0] +stimulus_freq = df + eodf + +'''PLOT''' +# create colormap +colors = plt.cm.prism(np.linspace(0, 1, stim_count)) + +# timeline of whole rec +dataset.plot_timeline() + +# voltage and spikes of current sam +plot_vt_spikes(time, potential, spike_times) + +# spike times of all loops +scatter_plot(colors, stimuli, stim_count) + + +'''POWER SPECTRUM''' +# define variables for binary spikes function +spikes, _ = stim.trace_data('Spikes-1') +ti = stim.trace_info('V-1') +dt = ti.sampling_interval +duration = stim.duration + +### spectrum +# vector with binary values for wholes length of stim +binary = binary_spikes(spikes, duration, dt) + +# calculate firing rate +rate = firing_rates(binary, 0.01, dt) # box width of 10 ms + +# plot psth or whatever +# plt.plot(time_stim, rate) +# plt.show() + +freq, power = power_spectrum(binary, dt) + +power_spectrum_plot(freq, power) + + +### TODO: + # then loop over sams/dfs, all stims, intensities + # when does stim start in eodf/ at which phase and how does that influence our signal --> alignment problem: egal wenn wir spectren haben + # we want to see peaks at phase locking to own and stim frequency, and at amp modulation frequency \ No newline at end of file diff --git a/code/test.py b/code/test.py new file mode 100644 index 0000000..fe621f7 --- /dev/null +++ b/code/test.py @@ -0,0 +1,194 @@ +import glob +import pathlib +import numpy as np +import matplotlib.pyplot as plt +import rlxnix as rlx +from IPython import embed +from scipy.signal import welch + +def binary_spikes(spike_times, duration, dt): + """ + Converts the spike times to a binary representations + + Parameters + ---------- + spike_times : np.array + The spike times. + duration : float + The trial duration: + dt : float + The temporal resolution. + + Returns + ------- + binary : np.array + The binary representation of the spike train. + + """ + binary = np.zeros(int(np.round(duration / dt))) #create the binary array with the same length as potential + + spike_indices = np.asarray(np.round(spike_times / dt), dtype = int) # get the indices + binary[spike_indices] = 1 # put the indices into binary + return binary + +def firing_rate(binary_spikes, dt = 0.000025, box_width = 0.01): + box = np.ones(int(box_width // dt)) + box /= np.sum(box) * dt # normalisierung des box kernels to an integral of one + rate = np.convolve(binary_spikes, box, mode = 'same') + return rate + +def power_spectrum(rate, dt): + freq, power = welch(rate, fs = 1/dt, nperseg = 2**16, noverlap = 2**15) + return freq, power + +def extract_stim_data(stimulus): + ''' + extracts all necessary metadata for each stimulus + + Parameters + ---------- + stimulus : Stimulus object or rlxnix.base.repro module + The stimulus from which the data is needed. + + Returns + ------- + amplitude : float + The relative signal amplitude in percent. + df : float + Distance of the stimulus to the current EODf. + eodf : float + Current EODf. + stim_freq : float + The total stimulus frequency (EODF+df). + amp_mod : float + The current amplitude modulation. + ny_freq : float + The current nyquist frequency. + + ''' + # extract metadata + # the stim.name adjusts the first key as it changes with every stimulus + amplitude = stim.metadata[stim.name]['Contrast'][0][0] + df = stim.metadata[stim.name]['DeltaF'][0][0] + eodf = round(stim.metadata[stim.name]['EODf'][0][0]) + stim_freq = round(stim.metadata[stim.name]['Frequency'][0][0]) + # calculates the amplitude modulation + amp_mod, ny_freq = AM(eodf, stim_freq) + return amplitude, df, eodf, stim_freq, amp_mod, ny_freq + +def AM(EODf, stimulus): + """ + Calculates the Amplitude Modulation and Nyquist frequency + + Parameters + ---------- + EODf : float or int + The current EODf. + stimulus : float or int + The absolute frequency of the stimulus. + + Returns + ------- + AM : float + The amplitude modulation resulting from the stimulus. + nyquist : float + The maximum frequency possible to resolve with the EODf. + + """ + nyquist = EODf * 0.5 + AM = np.mod(stimulus, nyquist) + return AM, nyquist + +def remove_poor(files): + """ + Removes poor datasets from the set of files for analysis + + Parameters + ---------- + files : list + list of files. + + Returns + ------- + good_files : list + list of files without the ones with the label poor. + + """ + # create list for good files + good_files = [] + # loop over files + for i in range(len(files)): + # print(files[i]) + # load the file (takes some time) + data = rlx.Dataset(files[i]) + # get the quality + quality = str.lower(data.metadata["Recording"]["Recording quality"][0][0]) + # check the quality + if quality != "poor": + # if its good or fair add it to the good files + good_files.append(files[i]) + return good_files + +#find example data +datafolder = "../../data" + +example_file = datafolder + "/" + "2024-10-16-ah-invivo-1.nix" + +data_files = glob.glob("../../data/*.nix") + +#load dataset +dataset = rlx.Dataset(example_file) +# find all sams +sams = dataset.repro_runs('SAM') +sam = sams[2] # our example sam +potential,time = sam.trace_data("V-1") #membrane potential +spike_times, _ = sam.trace_data('Spikes-1') #spike times +df = sam.metadata['RePro-Info']['settings']['deltaf'][0][0] #find df in metadata +amp = sam.metadata['RePro-Info']['settings']['contrast'][0][0] * 100 #find amplitude in metadata + +#figure for a quick plot +fig = plt.figure(figsize = (5, 2.5)) +ax = fig.add_subplot() +ax.plot(time[time < 0.1], potential[time < 0.1]) # plot the membrane potential in 0.1s +ax.scatter(spike_times[spike_times < 0.1], + np.ones_like(spike_times[spike_times < 0.1]) * np.max(potential)) #plot teh spike times on top +plt.show() +plt.close() +# get all the stimuli +stims = sam.stimuli +# empty list for the spike times +spikes = [] +#spikes2 = np.array(range(len(stims))) +# loop over the stimuli +for stim in stims: + # get the spike times + spike, _ = stim.trace_data('Spikes-1') + # append the first 100ms to spikes + spikes.append(spike[spike < 0.1]) + # get stimulus duration + duration = stim.duration + ti = stim.trace_info("V-1") + dt = ti.sampling_interval # get the stimulus interval + bin_spikes = binary_spikes(spike, duration, dt) #binarize the spike_times + print(len(bin_spikes)) + pot,tim= stim.trace_data("V-1") #membrane potential + rate = firing_rate(bin_spikes, dt = dt) + print(np.mean(rate)) + fig, [ax1, ax2] = plt.subplots(1, 2,layout = 'constrained') + ax1.plot(tim,rate) + ax1.set_ylim(0,600) + ax1.set_xlim(0, 0.04) + freq, power = power_spectrum(rate, dt) + ax2.plot(freq,power) + ax2.set_xlim(0,1000) + plt.close() + if stim == stims[-1]: + amplitude, df, eodf, stim_freq = extract_stim_data(stim) + print(amplitude, df, eodf, stim_freq) + +# make an eventplot +fig = plt.figure(figsize = (5, 3), layout = 'constrained') +ax = fig.add_subplot() +ax.eventplot(spikes, linelength = 0.8) +ax.set_xlabel('time [ms]') +ax.set_ylabel('loop no.') diff --git a/code/useful_functions.py b/code/useful_functions.py new file mode 100644 index 0000000..1115ef5 --- /dev/null +++ b/code/useful_functions.py @@ -0,0 +1,173 @@ +import glob +import pathlib +import numpy as np +import matplotlib.pyplot as plt +import rlxnix as rlx +from IPython import embed +from scipy.signal import welch + +def AM(EODf, stimulus): + """ + Calculates the Amplitude Modulation and Nyquist frequency + + Parameters + ---------- + EODf : float or int + The current EODf. + stimulus : float or int + The absolute frequency of the stimulus. + + Returns + ------- + AM : float + The amplitude modulation resulting from the stimulus. + nyquist : float + The maximum frequency possible to resolve with the EODf. + + """ + nyquist = EODf * 0.5 + AM = np.mod(stimulus, nyquist) + return AM, nyquist + +def binary_spikes(spike_times, duration, dt): + """ + Converts the spike times to a binary representations + + Parameters + ---------- + spike_times : np.array + The spike times. + duration : float + The trial duration: + dt : float + The temporal resolution. + + Returns + ------- + binary : np.array + The binary representation of the spike train. + + """ + binary = np.zeros(int(np.round(duration / dt))) #create the binary array with the same length as potential + + spike_indices = np.asarray(np.round(spike_times / dt), dtype = int) # get the indices + binary[spike_indices] = 1 # put the indices into binary + return binary + +def extract_stim_data(stimulus): + ''' + extracts all necessary metadata for each stimulus + + Parameters + ---------- + stimulus : Stimulus object or rlxnix.base.repro module + The stimulus from which the data is needed. + + Returns + ------- + amplitude : float + The relative signal amplitude in percent. + df : float + Distance of the stimulus to the current EODf. + eodf : float + Current EODf. + stim_freq : float + The total stimulus frequency (EODF+df). + amp_mod : float + The current amplitude modulation. + ny_freq : float + The current nyquist frequency. + + ''' + # extract metadata + # the stim.name adjusts the first key as it changes with every stimulus + amplitude = stimulus.metadata[stimulus.name]['Contrast'][0][0] + df = stimulus.metadata[stimulus.name]['DeltaF'][0][0] + eodf = round(stimulus.metadata[stimulus.name]['EODf'][0][0]) + stim_freq = round(stimulus.metadata[stimulus.name]['Frequency'][0][0]) + # calculates the amplitude modulation + amp_mod, ny_freq = AM(eodf, stim_freq) + return amplitude, df, eodf, stim_freq, amp_mod, ny_freq + +def firing_rate(binary_spikes, dt = 0.000025, box_width = 0.01): + ''' + Calculates the firing rate from binary spikes + + Parameters + ---------- + binary_spikes : np.array + The binary representation of the spike train. + dt : float, optional + Time difference between two datapoints. The default is 0.000025. + box_width : float, optional + Time window on which the rate should be computed on. The default is 0.01. + + Returns + ------- + rate : np.array + Array of firing rates. + + ''' + box = np.ones(int(box_width // dt)) + box /= np.sum(box) * dt # normalisierung des box kernels to an integral of one + rate = np.convolve(binary_spikes, box, mode = 'same') + return rate + +def power_spectrum(spike_times, duration, dt): + ''' + Computes a power spectrum based on the spike times + + Parameters + ---------- + spike_times : np.array + The spike times. + duration : float + The trial duration: + dt : float + The temporal resolution. + + Returns + ------- + freq : np.array + All the frequencies of the power spectrum. + power : np.array + Power of the frequencies calculated. + + ''' + # binarizes spikes + binary = binary_spikes(spike_times, duration, dt) + # computes firing rates + rate = firing_rate(binary, dt = dt) + # creates power spectrum + freq, power = welch(rate, fs = 1/dt, nperseg = 2**16, noverlap = 2**15) + return freq, power + +def remove_poor(files): + """ + Removes poor datasets from the set of files for analysis + + Parameters + ---------- + files : list + list of files. + + Returns + ------- + good_files : list + list of files without the ones with the label poor. + + """ + # create list for good files + good_files = [] + # loop over files + for i in range(len(files)): + # print(files[i]) + # load the file (takes some time) + data = rlx.Dataset(files[i]) + # get the quality + quality = str.lower(data.metadata["Recording"]["Recording quality"][0][0]) + # check the quality + if quality != "poor": + # if its good or fair add it to the good files + good_files.append(files[i]) + return good_files \ No newline at end of file