Hello There

This commit is contained in:
sarah.eisele 2024-10-18 15:34:09 +02:00
parent 71618a503e
commit 5a91331d9e

161
analysis_1.py Normal file
View File

@ -0,0 +1,161 @@
import rlxnix as rlx
import numpy as np
import matplotlib.pyplot as plt
import os
from scipy.signal import welch
# close all currently open figures
plt.close('all')
'''FUNCTIONS'''
def vt_spikes(dataset):
# get sams
sams = dataset.repro_runs('SAM')
sam = sams[2]
# get potetial over time (vt curve)
potential, time = sam.trace_data('V-1')
# get spike times
spike_times, _ = sam.trace_data('Spikes-1')
# plot
fig = plt.figure(figsize=(5, 2.5))
# alternative to ax = axs[0]
ax = fig.add_subplot()
# plot vt diagram
ax.plot(time[time<0.1], potential[time<0.1])
# plot spikes into vt diagram, at max V
ax.scatter(spike_times[spike_times<0.1], np.ones_like(spike_times[spike_times<0.1]) * np.max(potential))
plt.show()
return sam
def scatter_plot(sam1):
### plot scatter plot for one sam with all 3 stims
# get stim count
stim_count = sam1.stimulus_count
# create colormap
colors = plt.cm.prism(np.linspace(0, 1, stim_count))
# plot
fig = plt.figure()
ax = fig.add_subplot()
stimuli = []
for i in range(stim_count):
# get stim i from sam
stim = sam.stimuli[i]
potential_stim, time_stim = stim.trace_data('V-1')
# get spike_times
spike_times_stim, _ = stim.trace_data('Spikes-1')
stimuli.append(spike_times_stim)
ax.eventplot(stimuli, colors=colors)
ax.set_xlabel('Spike Times [ms]')
ax.set_ylabel('Loop #')
ax.set_yticks(range(stim_count))
ax.set_title('Spikes of SAM 3')
plt.show()
return stim, stim_count, time_stim
# create binary array with ones for spike times
def binary_spikes(spike_times, duration , dt):
'''Converts spike times to binary representation
Params
------
spike_times: np.array
spike times
duration: float
trial duration
dt: float
temporal resolution
Returns
--------
binary: np.array
The binary representation of the spike times
'''
binary = np.zeros(int(duration//dt)) # // is truncated division, returns number w/o decimals, same as np.round
spike_indices = np.asarray(np.round(spike_times//dt), dtype=int)
binary[spike_indices] = 1
return binary
# function to plot psth
def firing_rates(binary_spikes, box_width=0.01, dt=0.000025):
box = np.ones(int(box_width // dt))
box /= np.sum(box * dt) # normalize box kernel w interal of 1
rate = np.convolve(binary_spikes, box, mode='same')
return rate
def power_spectrum(rate, dt):
f, p = welch(rate, fs = 1./dt, nperseg=2**16, noverlap=2**15)
# algorithm makes rounding mistakes, we want to calc many spectra and take mean of those
# nperseg: length of segments in # datapoints
# noverlap: # datapoints that overlap in segments
return f, p
'''IMPORT DATA'''
datafolder = '../data' #./ wo ich gerade bin; ../ eine ebene höher; ../../ zwei ebenen höher
example_file = os.path.join('..', 'data', '2024-10-16-ac-invivo-1.nix')
# extract metadata
dataset = rlx.Dataset(example_file)
### plot
# timeline of whole rec
dataset.plot_timeline()
# voltage and spikes of current sam
sam = vt_spikes(dataset)
# spike times of all loops
stim, stim_count, time_stim = scatter_plot(sam)
'''POWER SPECTRUM'''
# define variables for binary spikes function
spikes, _ = stim.trace_data('Spikes-1')
ti = stim.trace_info('V-1')
dt = ti.sampling_interval
duration = stim.duration
### spectrum
# vector with binary values for wholes length of stim
binary = binary_spikes(spikes, duration, dt)
# calculate firing rate
rate = firing_rates(binary, 0.01, dt) # box width of 10 ms
# plot psth or whatever
# plt.plot(time_stim, rate)
# plt.show()
freq, power = power_spectrum(binary, dt)
# plot power spectrum
fig = plt.figure()
ax = fig.add_subplot()
ax.plot(freq, power)
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Power [1/Hz]')
ax.set_xlim(0, 1000)
plt.show()
eodf = stim.metadata[stim.name]['EODF'][0][0]
df = stim.metadata['RePro-Info']['settings']['deltaf'][0][0]
stimulus_freq = df + eodf
### TODO:
# then loop over sams/dfs, all stims, intensities
# when does stim start in eodf/ at which phase and how does that influence our signal --> alignment problem: egal wenn wir spectren haben
# we want to see peaks at phase locking to own and stim frequency, and at amp modulation frequency
# clean up current code (define variables outside of functions, plot spectrum in function)
# git
# tuning curve over stim intensities or over delta f?