Merge branch 'main' of https://whale.am28.uni-tuebingen.de/git/mbergmann/gpgrewe2024
This commit is contained in:
commit
100c36e703
@ -110,11 +110,14 @@ def plot_highlighted_integrals(frequency, power, points, color_mapping, points_c
|
|||||||
# Define color based on the category of the point
|
# Define color based on the category of the point
|
||||||
color = next((c for cat, c in color_mapping.items() if point in points_categories[cat]), 'gray')
|
color = next((c for cat, c in color_mapping.items() if point in points_categories[cat]), 'gray')
|
||||||
|
|
||||||
|
# Find the category of the point
|
||||||
|
point_category = next((cat for cat, pts in points_categories.items() if point in pts), "Unknown")
|
||||||
|
|
||||||
# Shade the region around the point where the integral was calculated
|
# Shade the region around the point where the integral was calculated
|
||||||
ax.axvspan(point - delta, point + delta, color=color, alpha=0.3, label=f'{point:.2f} Hz')
|
ax.axvspan(point - delta, point + delta, color=color, alpha=0.3, label=f'{point:.2f} Hz')
|
||||||
|
|
||||||
# Print out point and color
|
# Print out point, category, and color
|
||||||
print(f"Integral around {point:.2f} Hz: {integral:.5e}, Color: {color}")
|
print(f"{point_category}: Integral: {integral:.5e}, Color: {color}")
|
||||||
|
|
||||||
# Annotate the plot with the point and its color
|
# Annotate the plot with the point and its color
|
||||||
ax.text(point, max(power) * 0.9, f'{point:.2f}', color=color, fontsize=10, ha='center')
|
ax.text(point, max(power) * 0.9, f'{point:.2f}', color=color, fontsize=10, ha='center')
|
||||||
|
@ -154,6 +154,59 @@ def calculate_integral(freq, power, point, delta = 2.5):
|
|||||||
local_mean = np.mean([l_integral, r_integral])
|
local_mean = np.mean([l_integral, r_integral])
|
||||||
return integral, local_mean, p_power
|
return integral, local_mean, p_power
|
||||||
|
|
||||||
|
def contrast_sorting(sams, con_1 = 20, con_2 = 10, con_3 = 5, stim_count = 3, stim_dur = 2):
|
||||||
|
'''
|
||||||
|
sorts the sams into three contrasts
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
sams : ReproRuns
|
||||||
|
The sams to be sorted.
|
||||||
|
con_1 : int, optional
|
||||||
|
the first contrast. The default is 20.
|
||||||
|
con_2 : int, optional
|
||||||
|
the second contrast. The default is 10.
|
||||||
|
con_3 : int, optional
|
||||||
|
the third contrast. The default is 5.
|
||||||
|
stim_count : int, optional
|
||||||
|
the amount of stimuli per sam in a good sam. The default is 3.
|
||||||
|
stim_dur : int, optional
|
||||||
|
The stimulus duration. The default is 2.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
contrast_sams : dictionary
|
||||||
|
A dictionary containing all sams sorted to the contrasts.
|
||||||
|
|
||||||
|
'''
|
||||||
|
# dictionary for the contrasts
|
||||||
|
contrast_sams = {con_1 : [],
|
||||||
|
con_2 : [],
|
||||||
|
con_3 : []}
|
||||||
|
# loop over all sams
|
||||||
|
for sam in sams:
|
||||||
|
# get the contrast
|
||||||
|
avg_dur, contrast, _, _, _, _, _ = sam_data(sam)
|
||||||
|
# check for valid trails
|
||||||
|
if np.isnan(contrast):
|
||||||
|
continue
|
||||||
|
elif sam.stimulus_count < stim_count: #aborted trials
|
||||||
|
continue
|
||||||
|
elif avg_dur < (stim_dur * 0.8):
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
contrast = int(contrast) # get integer of contrast
|
||||||
|
# sort them accordingly
|
||||||
|
if contrast == con_1:
|
||||||
|
contrast_sams[con_1].append(sam)
|
||||||
|
elif contrast == con_2:
|
||||||
|
contrast_sams[con_2].append(sam)
|
||||||
|
elif contrast == con_3:
|
||||||
|
contrast_sams[con_3].append(sam)
|
||||||
|
else:
|
||||||
|
continue
|
||||||
|
return contrast_sams
|
||||||
|
|
||||||
def extract_stim_data(stimulus):
|
def extract_stim_data(stimulus):
|
||||||
'''
|
'''
|
||||||
extracts all necessary metadata for each stimulus
|
extracts all necessary metadata for each stimulus
|
||||||
@ -483,9 +536,9 @@ def valid_integrals(integral, local_mean, point, threshold = 0.1):
|
|||||||
"""
|
"""
|
||||||
valid = integral > (local_mean * (1 + threshold))
|
valid = integral > (local_mean * (1 + threshold))
|
||||||
if valid:
|
if valid:
|
||||||
print(f"The point {point} is valid, as its integral exceeds the threshold.")
|
print(f"The point {point} is valid.")
|
||||||
else:
|
else:
|
||||||
print(f"The point {point} is not valid, as its integral does not exceed the threshold.")
|
print(f"The point {point} is not valid.")
|
||||||
return valid
|
return valid
|
||||||
|
|
||||||
'''TODO Sarah: AM-freq plot:
|
'''TODO Sarah: AM-freq plot:
|
||||||
|
Loading…
Reference in New Issue
Block a user