143 lines
4.8 KiB
Python
143 lines
4.8 KiB
Python
'''This script contains all functions for various plots that could be relevant
|
|
for the presentation or protocol of the Grewe GP 2024'''
|
|
|
|
import os
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import rlxnix as rlx
|
|
from useful_functions import power_spectrum
|
|
import sys
|
|
|
|
'''IMPORT DATA'''
|
|
datafolder = '../data' #./ wo ich gerade bin; ../ eine ebene höher; ../../ zwei ebenen höher
|
|
example_file = os.path.join('..', 'data', '2024-10-16-ac-invivo-1.nix')
|
|
|
|
'''EXTRACT DATA'''
|
|
dataset = rlx.Dataset(example_file)
|
|
|
|
# get sams
|
|
sams = dataset.repro_runs('SAM')
|
|
sam = sams[2]
|
|
|
|
# get stims
|
|
stimulus = sam.stimuli[-1]
|
|
stim_count = sam.stimulus_count
|
|
|
|
'''PLOTS'''
|
|
# create colormap
|
|
colors = plt.cm.prism(np.linspace(0, 1, stim_count))
|
|
|
|
# plot timeline of whole rec
|
|
dataset.plot_timeline()
|
|
|
|
# plot voltage over time for whole trace
|
|
def plot_vt_spikes(t, v, spike_t):
|
|
fig = plt.figure(figsize=(5, 2.5))
|
|
# alternative to ax = axs[0]
|
|
ax = fig.add_subplot()
|
|
# plot vt diagram
|
|
ax.plot(t[t<0.1], v[t<0.1])
|
|
# plot spikes into vt diagram, at max V
|
|
ax.scatter(spike_t[spike_t<0.1], np.ones_like(spike_t[spike_t<0.1]) * np.max(v))
|
|
plt.show()
|
|
|
|
# plot scatter plot for one sam with all 3 stims
|
|
def scatter_plot(colormap, stimuli_list, stimulus_count):
|
|
fig = plt.figure()
|
|
ax = fig.add_subplot()
|
|
|
|
ax.eventplot(stimuli_list, colors=colormap)
|
|
ax.set_xlabel('Spike Times [ms]')
|
|
ax.set_ylabel('Loop #')
|
|
ax.set_yticks(range(stimulus_count))
|
|
ax.set_title('Spikes of SAM 3')
|
|
plt.show()
|
|
|
|
# calculate power spectrum
|
|
freq, power = power_spectrum(stimulus)
|
|
|
|
# plot power spectrum
|
|
def power_spectrum_plot(f, p):
|
|
# plot power spectrum
|
|
fig = plt.figure()
|
|
ax = fig.add_subplot()
|
|
ax.plot(freq, power)
|
|
ax.set_xlabel('Frequency [Hz]')
|
|
ax.set_ylabel('Power [1/Hz]')
|
|
ax.set_xlim(0, 1000)
|
|
plt.show()
|
|
|
|
# DIANAS POWER SPECTRUM PLOT
|
|
functions_path = r"C:\Users\diana\OneDrive - UT Cloud\Master\GPs\GP1_Grewe\Projekt\gpgrewe2024\code"
|
|
sys.path.append(functions_path)
|
|
import useful_functions as u
|
|
|
|
def plot_highlighted_integrals(frequency, power, points, color_mapping, points_categories, delta=2.5):
|
|
"""
|
|
Plot the power spectrum and highlight integrals that exceed the threshold.
|
|
|
|
Parameters
|
|
----------
|
|
frequency : np.array
|
|
An array of frequencies corresponding to the power values.
|
|
power : np.array
|
|
An array of power spectral density values.
|
|
points : list
|
|
A list of harmonic frequencies to check and highlight.
|
|
delta : float
|
|
Half-width of the range for integration around each point.
|
|
color_mapping : dict
|
|
A dictionary mapping each category to its color.
|
|
points_categories : dict
|
|
A mapping of categories to lists of points.
|
|
|
|
Returns
|
|
-------
|
|
fig : matplotlib.figure.Figure
|
|
The created figure object with highlighted integrals.
|
|
"""
|
|
fig, ax = plt.subplots()
|
|
ax.plot(frequency, power) # Plot power spectrum
|
|
|
|
for point in points:
|
|
# Use the imported function to calculate the integral and local mean
|
|
integral, local_mean, _ = u.calculate_integral(frequency, power, point)
|
|
|
|
# Use the imported function to check if the point is valid
|
|
valid = u.valid_integrals(integral, local_mean, point)
|
|
|
|
if valid:
|
|
# Define color based on the category of the point
|
|
color = next((c for cat, c in color_mapping.items() if point in points_categories[cat]), 'gray')
|
|
|
|
# Find the category of the point
|
|
point_category = next((cat for cat, pts in points_categories.items() if point in pts), "Unknown")
|
|
|
|
# Shade the region around the point where the integral was calculated
|
|
ax.axvspan(point - delta, point + delta, color=color, alpha=0.3, label=f'{point:.2f} Hz')
|
|
|
|
# Print out point, category, and color
|
|
print(f"{point_category}: Integral: {integral:.5e}, Color: {color}")
|
|
|
|
# Annotate the plot with the point and its color
|
|
ax.text(point, max(power) * 0.9, f'{point:.2f}', color=color, fontsize=10, ha='center')
|
|
|
|
# Define left and right boundaries of adjacent regions
|
|
left_boundary = frequency[np.where((frequency >= point - 5 * delta) & (frequency < point - delta))[0][0]]
|
|
right_boundary = frequency[np.where((frequency > point + delta) & (frequency <= point + 5 * delta))[0][-1]]
|
|
|
|
# Add vertical dashed lines at the boundaries of the adjacent regions
|
|
#ax.axvline(x=left_boundary, color="k", linestyle="--")
|
|
#ax.axvline(x=right_boundary, color="k", linestyle="--")
|
|
|
|
ax.set_xlim([0, 1200])
|
|
ax.set_xlabel('Frequency (Hz)')
|
|
ax.set_ylabel('Power')
|
|
ax.set_title('Power Spectrum with Highlighted Integrals')
|
|
ax.legend()
|
|
|
|
return fig
|
|
|
|
|
|
|