This commit is contained in:
sarah.eisele 2024-10-24 10:13:49 +02:00
commit e6e252ac1d
3 changed files with 106 additions and 33 deletions

View File

@ -72,7 +72,7 @@ functions_path = r"C:\Users\diana\OneDrive - UT Cloud\Master\GPs\GP1_Grewe\Proje
sys.path.append(functions_path)
import useful_functions as u
def plot_highlighted_integrals(frequency, power, points, color_mapping, points_categories, delta = 2.5):
def plot_highlighted_integrals(frequency, power, points, color_mapping, points_categories, delta=2.5):
"""
Plot the power spectrum and highlight integrals that exceed the threshold.
@ -82,12 +82,10 @@ def plot_highlighted_integrals(frequency, power, points, color_mapping, points_c
An array of frequencies corresponding to the power values.
power : np.array
An array of power spectral density values.
exceeding_points : list
A list of harmonic frequencies that exceed the threshold.
points : list
A list of harmonic frequencies to check and highlight.
delta : float
Half-width of the range for integration around each point.
threshold : float
Threshold value to compare integrals with local mean.
color_mapping : dict
A dictionary mapping each category to its color.
points_categories : dict
@ -111,17 +109,23 @@ def plot_highlighted_integrals(frequency, power, points, color_mapping, points_c
if valid:
# Define color based on the category of the point
color = next((c for cat, c in color_mapping.items() if point in points_categories[cat]), 'gray')
# Shade the region around the point where the integral was calculated
ax.axvspan(point - delta, point + delta, color=color, alpha=0.3, label=f'{point:.2f} Hz')
print(f"Integral around {point:.2f} Hz: {integral:.5e}")
# Print out point and color
print(f"Integral around {point:.2f} Hz: {integral:.5e}, Color: {color}")
# Annotate the plot with the point and its color
ax.text(point, max(power) * 0.9, f'{point:.2f}', color=color, fontsize=10, ha='center')
# Define left and right boundaries of adjacent regions
left_boundary = frequency[np.where((frequency >= point - 5 * delta) & (frequency < point - delta))[0][0]]
right_boundary = frequency[np.where((frequency > point + delta) & (frequency <= point + 5 * delta))[0][-1]]
# Add vertical dashed lines at the boundaries of the adjacent regions
ax.axvline(x=left_boundary, color="k", linestyle="--")
ax.axvline(x=right_boundary, color="k", linestyle="--")
#ax.axvline(x=left_boundary, color="k", linestyle="--")
#ax.axvline(x=right_boundary, color="k", linestyle="--")
ax.set_xlim([0, 1200])
ax.set_xlabel('Frequency (Hz)')
@ -132,3 +136,4 @@ def plot_highlighted_integrals(frequency, power, points, color_mapping, points_c
return fig

View File

@ -10,11 +10,9 @@ import useful_functions as f
# variables
delta = 2.5 # radius for peak detection
# all files we want to use
files = glob.glob("../data/2024-10-16-af*.nix")
files = glob.glob("../data/2024-10-*.nix")
# get only the good and fair filepaths
new_files = f.remove_poor(files)
@ -22,6 +20,9 @@ new_files = f.remove_poor(files)
# loop over all the good files
for file in new_files:
contrast_frequencies = []
contrast_powers = []
# load a file
dataset = rlx.Dataset(file)
# extract sams
@ -30,14 +31,40 @@ for file in new_files:
stim_frequencies = np.zeros(len(sams))
peak_powers = np.zeros_like(stim_frequencies)
# loop over all sams
for i, sam in enumerate(sams):
# get sam frequency and stimuli
avg_dur, _, _, _, _, _, stim_frequency = f.sam_data(sam)
print(avg_dur)
if np.isnan(avg_dur):
# dictionary for the contrasts
contrast_sams = {20 : [],
10 : [],
5 : []}
# loop over all sams
for sam in sams:
# get the contrast
avg_dur, contrast, _, _, _, _, _ = f.sam_data(sam)
# check for valid trails
if np.isnan(contrast):
continue
elif sam.stimulus_count < 3: #aborted trials
continue
elif avg_dur < 1.7:
continue
# use this to change lists basically and add the contrast somewhere
else:
contrast = int(contrast) # get integer of contrast
# sort them accordingly
if contrast == 20:
contrast_sams[20].append(sam)
if contrast == 10:
contrast_sams[10].append(sam)
if contrast == 5:
contrast_sams[5].append(sam)
else:
continue
# loop over the contrasts
for key in contrast_sams:
stim_frequencies = np.zeros(len(contrast_sams[key]))
peak_powers = np.zeros_like(stim_frequencies)
for i, sam in enumerate(contrast_sams[key]):
# get stimulus frequency and stimuli
_, _, _, _, _, _, stim_frequency = f.sam_data(sam)
stimuli = sam.stimuli
# lists for the power spectra
frequencies = []
@ -52,20 +79,27 @@ for file in new_files:
#average over the stimuli
sam_frequency = np.mean(frequencies, axis = 0)
sam_power = np.mean(powers, axis = 0)
# detect and validate peaks
# detect peaks
integral, surroundings, peak_power = f.calculate_integral(sam_frequency,
sam_power, stim_frequency)
valid = f.valid_integrals(integral, surroundings, stim_frequency)
#if there is a peak get the power in the peak powers
if valid == True:
peak_powers[i] = peak_power
peak_powers[i] = peak_power
# add the current stimulus frequency
stim_frequencies[i] = stim_frequency
# replae zeros with NaN
peak_powers = np.where(peak_powers == 0, np.nan, peak_powers)
contrast_frequencies.append(stim_frequencies)
contrast_powers.append(peak_powers)
# replae zeros with NaN
peak_powers = np.where(peak_powers == 0, np.nan, peak_powers)
plt.plot(stim_frequencies, peak_powers)
fig, ax = plt.subplots(layout = 'constrained')
ax.plot(contrast_frequencies[0], contrast_powers[0])
ax.plot(contrast_frequencies[1], contrast_powers[1])
ax.plot(contrast_frequencies[2], contrast_powers[2])
ax.set_xlabel('stimulus frequency [Hz]')
ax.set_ylabel(r' power [$\frac{\mathrm{mV^2}}{\mathrm{Hz}}$]')
ax.set_title(f"{file}")

View File

@ -32,7 +32,7 @@ def all_coming_together(freq_array, power_array, points_list, categories, num_ha
Returns
-------
valid_points : list
A list of valid points with their harmonics.
A continuous list of harmonics for all valid points.
color_mapping : dict
A dictionary mapping categories to corresponding colors.
category_harmonics : dict
@ -40,7 +40,7 @@ def all_coming_together(freq_array, power_array, points_list, categories, num_ha
messages : list
A list of messages for each point, stating whether it was valid or not.
"""
valid_points = []
valid_points = [] # A continuous list of harmonics for valid points
color_mapping = {}
category_harmonics = {}
messages = []
@ -58,7 +58,7 @@ def all_coming_together(freq_array, power_array, points_list, categories, num_ha
if valid:
# Step 3: Prepare harmonics if the point is valid
harmonics, color_map, category_harm = prepare_harmonic(point, category, num_harmonics, color)
valid_points.append((point, harmonics))
valid_points.extend(harmonics) # Use extend() to append harmonics in a continuous manner
color_mapping.update(color_map)
category_harmonics.update(category_harm)
messages.append(f"The point {point} is valid.")
@ -67,6 +67,8 @@ def all_coming_together(freq_array, power_array, points_list, categories, num_ha
return valid_points, color_mapping, category_harmonics, messages
def AM(EODf, stimulus):
"""
Calculates the Amplitude Modulation and Nyquist frequency
@ -273,7 +275,7 @@ def power_spectrum(stimulus):
# computes firing rates
rate = firing_rate(binary, dt = dt)
# creates power spectrum
freq, power = welch(rate, fs = 1/dt, nperseg = 2**16, noverlap = 2**15)
freq, power = welch(binary, fs = 1/dt, nperseg = 2**16, noverlap = 2**15)
return freq, power
def prepare_harmonic(frequency, category, num_harmonics, color):
@ -397,6 +399,39 @@ def sam_data(sam):
avg_dur = np.mean(durations)
return avg_dur, sam_amp, sam_am, sam_df, sam_eodf, sam_nyquist, sam_stim
def sam_spectrum(sam):
"""
Creates a power spectrum for a ReproRun of a SAM.
Parameters
----------
sam : ReproRun Object
The Reprorun the powerspectrum should be generated from.
Returns
-------
sam_frequency : np.array
The frequencies of the powerspectrum.
sam_power : np.array
The powers of the frequencies.
"""
stimuli = sam.stimuli
# lists for the power spectra
frequencies = []
powers = []
# loop over the stimuli
for stimulus in stimuli:
# get the powerspectrum for each stimuli
frequency, power = power_spectrum(stimulus)
# append the power spectrum data
frequencies.append(frequency)
powers.append(power)
#average over the stimuli
sam_frequency = np.mean(frequencies, axis = 0)
sam_power = np.mean(powers, axis = 0)
return sam_frequency, sam_power
def spike_times(stim):
"""
Reads out the spike times and other necessary parameters
@ -425,8 +460,7 @@ def spike_times(stim):
dt = ti.sampling_interval
return spikes, stim_dur, dt # se changed spike_times to spikes so its not the same as name of function
def valid_integrals(integral, local_mean, point, threshold = 0.3):
def valid_integrals(integral, local_mean, point, threshold = 0.1):
"""
Check if the integral exceeds the threshold compared to the local mean and
provide feedback on whether the given point is valid or not.