Merge branch 'main' of https://whale.am28.uni-tuebingen.de/git/mbergmann/gpgrewe2024
This commit is contained in:
commit
e6e252ac1d
@ -72,7 +72,7 @@ functions_path = r"C:\Users\diana\OneDrive - UT Cloud\Master\GPs\GP1_Grewe\Proje
|
||||
sys.path.append(functions_path)
|
||||
import useful_functions as u
|
||||
|
||||
def plot_highlighted_integrals(frequency, power, points, color_mapping, points_categories, delta = 2.5):
|
||||
def plot_highlighted_integrals(frequency, power, points, color_mapping, points_categories, delta=2.5):
|
||||
"""
|
||||
Plot the power spectrum and highlight integrals that exceed the threshold.
|
||||
|
||||
@ -82,12 +82,10 @@ def plot_highlighted_integrals(frequency, power, points, color_mapping, points_c
|
||||
An array of frequencies corresponding to the power values.
|
||||
power : np.array
|
||||
An array of power spectral density values.
|
||||
exceeding_points : list
|
||||
A list of harmonic frequencies that exceed the threshold.
|
||||
points : list
|
||||
A list of harmonic frequencies to check and highlight.
|
||||
delta : float
|
||||
Half-width of the range for integration around each point.
|
||||
threshold : float
|
||||
Threshold value to compare integrals with local mean.
|
||||
color_mapping : dict
|
||||
A dictionary mapping each category to its color.
|
||||
points_categories : dict
|
||||
@ -111,17 +109,23 @@ def plot_highlighted_integrals(frequency, power, points, color_mapping, points_c
|
||||
if valid:
|
||||
# Define color based on the category of the point
|
||||
color = next((c for cat, c in color_mapping.items() if point in points_categories[cat]), 'gray')
|
||||
|
||||
# Shade the region around the point where the integral was calculated
|
||||
ax.axvspan(point - delta, point + delta, color=color, alpha=0.3, label=f'{point:.2f} Hz')
|
||||
print(f"Integral around {point:.2f} Hz: {integral:.5e}")
|
||||
|
||||
|
||||
# Print out point and color
|
||||
print(f"Integral around {point:.2f} Hz: {integral:.5e}, Color: {color}")
|
||||
|
||||
# Annotate the plot with the point and its color
|
||||
ax.text(point, max(power) * 0.9, f'{point:.2f}', color=color, fontsize=10, ha='center')
|
||||
|
||||
# Define left and right boundaries of adjacent regions
|
||||
left_boundary = frequency[np.where((frequency >= point - 5 * delta) & (frequency < point - delta))[0][0]]
|
||||
right_boundary = frequency[np.where((frequency > point + delta) & (frequency <= point + 5 * delta))[0][-1]]
|
||||
|
||||
# Add vertical dashed lines at the boundaries of the adjacent regions
|
||||
ax.axvline(x=left_boundary, color="k", linestyle="--")
|
||||
ax.axvline(x=right_boundary, color="k", linestyle="--")
|
||||
#ax.axvline(x=left_boundary, color="k", linestyle="--")
|
||||
#ax.axvline(x=right_boundary, color="k", linestyle="--")
|
||||
|
||||
ax.set_xlim([0, 1200])
|
||||
ax.set_xlabel('Frequency (Hz)')
|
||||
@ -132,3 +136,4 @@ def plot_highlighted_integrals(frequency, power, points, color_mapping, points_c
|
||||
return fig
|
||||
|
||||
|
||||
|
||||
|
@ -10,11 +10,9 @@ import useful_functions as f
|
||||
|
||||
|
||||
|
||||
# variables
|
||||
delta = 2.5 # radius for peak detection
|
||||
|
||||
# all files we want to use
|
||||
files = glob.glob("../data/2024-10-16-af*.nix")
|
||||
files = glob.glob("../data/2024-10-*.nix")
|
||||
|
||||
# get only the good and fair filepaths
|
||||
new_files = f.remove_poor(files)
|
||||
@ -22,6 +20,9 @@ new_files = f.remove_poor(files)
|
||||
|
||||
# loop over all the good files
|
||||
for file in new_files:
|
||||
|
||||
contrast_frequencies = []
|
||||
contrast_powers = []
|
||||
# load a file
|
||||
dataset = rlx.Dataset(file)
|
||||
# extract sams
|
||||
@ -30,14 +31,40 @@ for file in new_files:
|
||||
stim_frequencies = np.zeros(len(sams))
|
||||
peak_powers = np.zeros_like(stim_frequencies)
|
||||
# loop over all sams
|
||||
for i, sam in enumerate(sams):
|
||||
# get sam frequency and stimuli
|
||||
avg_dur, _, _, _, _, _, stim_frequency = f.sam_data(sam)
|
||||
print(avg_dur)
|
||||
if np.isnan(avg_dur):
|
||||
# dictionary for the contrasts
|
||||
contrast_sams = {20 : [],
|
||||
10 : [],
|
||||
5 : []}
|
||||
# loop over all sams
|
||||
for sam in sams:
|
||||
# get the contrast
|
||||
avg_dur, contrast, _, _, _, _, _ = f.sam_data(sam)
|
||||
# check for valid trails
|
||||
if np.isnan(contrast):
|
||||
continue
|
||||
elif sam.stimulus_count < 3: #aborted trials
|
||||
continue
|
||||
elif avg_dur < 1.7:
|
||||
continue
|
||||
# use this to change lists basically and add the contrast somewhere
|
||||
else:
|
||||
contrast = int(contrast) # get integer of contrast
|
||||
# sort them accordingly
|
||||
if contrast == 20:
|
||||
contrast_sams[20].append(sam)
|
||||
if contrast == 10:
|
||||
contrast_sams[10].append(sam)
|
||||
if contrast == 5:
|
||||
contrast_sams[5].append(sam)
|
||||
else:
|
||||
continue
|
||||
# loop over the contrasts
|
||||
for key in contrast_sams:
|
||||
stim_frequencies = np.zeros(len(contrast_sams[key]))
|
||||
peak_powers = np.zeros_like(stim_frequencies)
|
||||
|
||||
for i, sam in enumerate(contrast_sams[key]):
|
||||
# get stimulus frequency and stimuli
|
||||
_, _, _, _, _, _, stim_frequency = f.sam_data(sam)
|
||||
stimuli = sam.stimuli
|
||||
# lists for the power spectra
|
||||
frequencies = []
|
||||
@ -52,20 +79,27 @@ for file in new_files:
|
||||
#average over the stimuli
|
||||
sam_frequency = np.mean(frequencies, axis = 0)
|
||||
sam_power = np.mean(powers, axis = 0)
|
||||
# detect and validate peaks
|
||||
# detect peaks
|
||||
integral, surroundings, peak_power = f.calculate_integral(sam_frequency,
|
||||
sam_power, stim_frequency)
|
||||
valid = f.valid_integrals(integral, surroundings, stim_frequency)
|
||||
#if there is a peak get the power in the peak powers
|
||||
if valid == True:
|
||||
peak_powers[i] = peak_power
|
||||
|
||||
peak_powers[i] = peak_power
|
||||
# add the current stimulus frequency
|
||||
stim_frequencies[i] = stim_frequency
|
||||
|
||||
# replae zeros with NaN
|
||||
peak_powers = np.where(peak_powers == 0, np.nan, peak_powers)
|
||||
|
||||
contrast_frequencies.append(stim_frequencies)
|
||||
contrast_powers.append(peak_powers)
|
||||
|
||||
# replae zeros with NaN
|
||||
peak_powers = np.where(peak_powers == 0, np.nan, peak_powers)
|
||||
|
||||
plt.plot(stim_frequencies, peak_powers)
|
||||
fig, ax = plt.subplots(layout = 'constrained')
|
||||
ax.plot(contrast_frequencies[0], contrast_powers[0])
|
||||
ax.plot(contrast_frequencies[1], contrast_powers[1])
|
||||
ax.plot(contrast_frequencies[2], contrast_powers[2])
|
||||
ax.set_xlabel('stimulus frequency [Hz]')
|
||||
ax.set_ylabel(r' power [$\frac{\mathrm{mV^2}}{\mathrm{Hz}}$]')
|
||||
ax.set_title(f"{file}")
|
||||
|
||||
|
||||
|
||||
|
@ -32,7 +32,7 @@ def all_coming_together(freq_array, power_array, points_list, categories, num_ha
|
||||
Returns
|
||||
-------
|
||||
valid_points : list
|
||||
A list of valid points with their harmonics.
|
||||
A continuous list of harmonics for all valid points.
|
||||
color_mapping : dict
|
||||
A dictionary mapping categories to corresponding colors.
|
||||
category_harmonics : dict
|
||||
@ -40,7 +40,7 @@ def all_coming_together(freq_array, power_array, points_list, categories, num_ha
|
||||
messages : list
|
||||
A list of messages for each point, stating whether it was valid or not.
|
||||
"""
|
||||
valid_points = []
|
||||
valid_points = [] # A continuous list of harmonics for valid points
|
||||
color_mapping = {}
|
||||
category_harmonics = {}
|
||||
messages = []
|
||||
@ -58,7 +58,7 @@ def all_coming_together(freq_array, power_array, points_list, categories, num_ha
|
||||
if valid:
|
||||
# Step 3: Prepare harmonics if the point is valid
|
||||
harmonics, color_map, category_harm = prepare_harmonic(point, category, num_harmonics, color)
|
||||
valid_points.append((point, harmonics))
|
||||
valid_points.extend(harmonics) # Use extend() to append harmonics in a continuous manner
|
||||
color_mapping.update(color_map)
|
||||
category_harmonics.update(category_harm)
|
||||
messages.append(f"The point {point} is valid.")
|
||||
@ -67,6 +67,8 @@ def all_coming_together(freq_array, power_array, points_list, categories, num_ha
|
||||
|
||||
return valid_points, color_mapping, category_harmonics, messages
|
||||
|
||||
|
||||
|
||||
def AM(EODf, stimulus):
|
||||
"""
|
||||
Calculates the Amplitude Modulation and Nyquist frequency
|
||||
@ -273,7 +275,7 @@ def power_spectrum(stimulus):
|
||||
# computes firing rates
|
||||
rate = firing_rate(binary, dt = dt)
|
||||
# creates power spectrum
|
||||
freq, power = welch(rate, fs = 1/dt, nperseg = 2**16, noverlap = 2**15)
|
||||
freq, power = welch(binary, fs = 1/dt, nperseg = 2**16, noverlap = 2**15)
|
||||
return freq, power
|
||||
|
||||
def prepare_harmonic(frequency, category, num_harmonics, color):
|
||||
@ -397,6 +399,39 @@ def sam_data(sam):
|
||||
avg_dur = np.mean(durations)
|
||||
return avg_dur, sam_amp, sam_am, sam_df, sam_eodf, sam_nyquist, sam_stim
|
||||
|
||||
def sam_spectrum(sam):
|
||||
"""
|
||||
Creates a power spectrum for a ReproRun of a SAM.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
sam : ReproRun Object
|
||||
The Reprorun the powerspectrum should be generated from.
|
||||
|
||||
Returns
|
||||
-------
|
||||
sam_frequency : np.array
|
||||
The frequencies of the powerspectrum.
|
||||
sam_power : np.array
|
||||
The powers of the frequencies.
|
||||
|
||||
"""
|
||||
stimuli = sam.stimuli
|
||||
# lists for the power spectra
|
||||
frequencies = []
|
||||
powers = []
|
||||
# loop over the stimuli
|
||||
for stimulus in stimuli:
|
||||
# get the powerspectrum for each stimuli
|
||||
frequency, power = power_spectrum(stimulus)
|
||||
# append the power spectrum data
|
||||
frequencies.append(frequency)
|
||||
powers.append(power)
|
||||
#average over the stimuli
|
||||
sam_frequency = np.mean(frequencies, axis = 0)
|
||||
sam_power = np.mean(powers, axis = 0)
|
||||
return sam_frequency, sam_power
|
||||
|
||||
def spike_times(stim):
|
||||
"""
|
||||
Reads out the spike times and other necessary parameters
|
||||
@ -425,8 +460,7 @@ def spike_times(stim):
|
||||
dt = ti.sampling_interval
|
||||
return spikes, stim_dur, dt # se changed spike_times to spikes so its not the same as name of function
|
||||
|
||||
|
||||
def valid_integrals(integral, local_mean, point, threshold = 0.3):
|
||||
def valid_integrals(integral, local_mean, point, threshold = 0.1):
|
||||
"""
|
||||
Check if the integral exceeds the threshold compared to the local mean and
|
||||
provide feedback on whether the given point is valid or not.
|
||||
|
Loading…
Reference in New Issue
Block a user