gpgrewe2024/code/tuning_curve_max.py

108 lines
3.4 KiB
Python

import glob
import matplotlib.pyplot as plt
import numpy as np
import rlxnix as rlx
import scipy as sp
import time
import useful_functions as f
# tatsächliche Power der peaks benutzen
# all files we want to use
files = glob.glob("../data/2024-10-*.nix")
# get only the good and fair filepaths
new_files = f.remove_poor(files)
# loop over all the good files
for file in new_files:
contrast_frequencies = []
contrast_powers = []
# load a file
dataset = rlx.Dataset(file)
# extract sams
sams = dataset.repro_runs('SAM')
# get arrays for frequnecies and power
stim_frequencies = np.zeros(len(sams))
peak_powers = np.zeros_like(stim_frequencies)
# loop over all sams
# dictionary for the contrasts
contrast_sams = {20 : [],
10 : [],
5 : []}
# loop over all sams
for sam in sams:
# get the contrast
avg_dur, contrast, _, _, _, _, _ = f.sam_data(sam)
# check for valid trails
if np.isnan(contrast):
continue
elif sam.stimulus_count < 3: #aborted trials
continue
elif avg_dur < 1.7:
continue
else:
contrast = int(contrast) # get integer of contrast
# sort them accordingly
if contrast == 20:
contrast_sams[20].append(sam)
if contrast == 10:
contrast_sams[10].append(sam)
if contrast == 5:
contrast_sams[5].append(sam)
else:
continue
# loop over the contrasts
for key in contrast_sams:
stim_frequencies = np.zeros(len(contrast_sams[key]))
peak_powers = np.zeros_like(stim_frequencies)
for i, sam in enumerate(contrast_sams[key]):
# get stimulus frequency and stimuli
_, _, _, _, _, _, stim_frequency = f.sam_data(sam)
stimuli = sam.stimuli
# lists for the power spectra
frequencies = []
powers = []
# loop over the stimuli
for stimulus in stimuli:
# get the powerspectrum for each stimuli
frequency, power = f.power_spectrum(stimulus)
# append the power spectrum data
frequencies.append(frequency)
powers.append(power)
#average over the stimuli
sam_frequency = np.mean(frequencies, axis = 0)
sam_power = np.mean(powers, axis = 0)
# detect peaks
integral, surroundings, peak_power = f.calculate_integral(sam_frequency,
sam_power, stim_frequency)
peak_powers[i] = peak_power
# add the current stimulus frequency
stim_frequencies[i] = stim_frequency
# replae zeros with NaN
peak_powers = np.where(peak_powers == 0, np.nan, peak_powers)
contrast_frequencies.append(stim_frequencies)
contrast_powers.append(peak_powers)
fig, ax = plt.subplots(layout = 'constrained')
ax.plot(contrast_frequencies[0], contrast_powers[0])
ax.plot(contrast_frequencies[1], contrast_powers[1])
ax.plot(contrast_frequencies[2], contrast_powers[2])
ax.set_xlabel('stimulus frequency [Hz]')
ax.set_ylabel(r' power [$\frac{\mathrm{mV^2}}{\mathrm{Hz}}$]')
ax.set_title(f"{file}")