finished basic tuning curve

This commit is contained in:
mbergmann 2024-10-24 09:17:25 +02:00
parent 78af3d05bd
commit 8f5c2f65e6

View File

@ -10,11 +10,9 @@ import useful_functions as f
# variables
delta = 2.5 # radius for peak detection
# all files we want to use
files = glob.glob("../data/2024-10-16-af*.nix")
files = glob.glob("../data/2024-10-*.nix")
# get only the good and fair filepaths
new_files = f.remove_poor(files)
@ -22,6 +20,9 @@ new_files = f.remove_poor(files)
# loop over all the good files
for file in new_files:
contrast_frequencies = []
contrast_powers = []
# load a file
dataset = rlx.Dataset(file)
# extract sams
@ -30,14 +31,40 @@ for file in new_files:
stim_frequencies = np.zeros(len(sams))
peak_powers = np.zeros_like(stim_frequencies)
# loop over all sams
for i, sam in enumerate(sams):
# get sam frequency and stimuli
avg_dur, _, _, _, _, _, stim_frequency = f.sam_data(sam)
print(avg_dur)
if np.isnan(avg_dur):
# dictionary for the contrasts
contrast_sams = {20 : [],
10 : [],
5 : []}
# loop over all sams
for sam in sams:
# get the contrast
avg_dur, contrast, _, _, _, _, _ = f.sam_data(sam)
# check for valid trails
if np.isnan(contrast):
continue
elif sam.stimulus_count < 3: #aborted trials
continue
elif avg_dur < 1.7:
continue
# use this to change lists basically and add the contrast somewhere
else:
contrast = int(contrast) # get integer of contrast
# sort them accordingly
if contrast == 20:
contrast_sams[20].append(sam)
if contrast == 10:
contrast_sams[10].append(sam)
if contrast == 5:
contrast_sams[5].append(sam)
else:
continue
# loop over the contrasts
for key in contrast_sams:
stim_frequencies = np.zeros(len(contrast_sams[key]))
peak_powers = np.zeros_like(stim_frequencies)
for i, sam in enumerate(contrast_sams[key]):
# get stimulus frequency and stimuli
_, _, _, _, _, _, stim_frequency = f.sam_data(sam)
stimuli = sam.stimuli
# lists for the power spectra
frequencies = []
@ -52,20 +79,27 @@ for file in new_files:
#average over the stimuli
sam_frequency = np.mean(frequencies, axis = 0)
sam_power = np.mean(powers, axis = 0)
# detect and validate peaks
# detect peaks
integral, surroundings, peak_power = f.calculate_integral(sam_frequency,
sam_power, stim_frequency)
valid = f.valid_integrals(integral, surroundings, stim_frequency)
#if there is a peak get the power in the peak powers
if valid == True:
peak_powers[i] = peak_power
peak_powers[i] = peak_power
# add the current stimulus frequency
stim_frequencies[i] = stim_frequency
# replae zeros with NaN
peak_powers = np.where(peak_powers == 0, np.nan, peak_powers)
contrast_frequencies.append(stim_frequencies)
contrast_powers.append(peak_powers)
# replae zeros with NaN
peak_powers = np.where(peak_powers == 0, np.nan, peak_powers)
plt.plot(stim_frequencies, peak_powers)
fig, ax = plt.subplots(layout = 'constrained')
ax.plot(contrast_frequencies[0], contrast_powers[0])
ax.plot(contrast_frequencies[1], contrast_powers[1])
ax.plot(contrast_frequencies[2], contrast_powers[2])
ax.set_xlabel('stimulus frequency [Hz]')
ax.set_ylabel(r' power [$\frac{\mathrm{mV^2}}{\mathrm{Hz}}$]')
ax.set_title(f"{file}")