gp_neurobio/code/base_chirps.py
2018-11-22 15:11:31 +01:00

106 lines
3.5 KiB
Python

from read_chirp_data import *
from utility import *
#import nix_helpers as nh
import matplotlib.pyplot as plt
import numpy as np
from IPython import embed
data_dir = "../data"
dataset = "2018-11-09-ad-invivo-1"
#data = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1","2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1"," 2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1")
#for dataset in data:
eod = read_chirp_eod(os.path.join(data_dir, dataset))
times = read_chirp_times(os.path.join(data_dir, dataset))
df_map = map_keys(eod)
#die äußere Schleife geht für alle Keys durch und somit durch alle dfs
#die innnere Schleife bildet die 16 Wiederholungen einer Frequenz ab
for i in df_map.keys():
freq = list(df_map[i])
fig,axs = plt.subplots(2, 2, sharex = True, sharey = True)
for idx, k in enumerate(freq):
ct = times[k]
e1 = eod[k]
zeit = e1[0]
eods = e1[1]
if idx <= 3:
axs[0, 0].plot(zeit, eods, color= 'blue', linewidth = 0.25)
axs[0, 0].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
elif 4<= idx <= 7:
axs[0, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25)
axs[0, 1].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
elif 8<= idx <= 11:
axs[1, 0].plot(zeit, eods, color= 'blue', linewidth = 0.25)
axs[1, 0].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
else:
axs[1, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25)
axs[1, 1].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
fig.suptitle('EOD for chirps', fontsize = 16)
axs[0,0].set_ylabel('Amplitude [mV]')
axs[0,1].set_xlabel('Amplitude [mV]')
axs[1,0].set_xlabel('Time [ms]')
axs[1,1].set_xlabel('Time [ms]')
#for i in df_map.keys():
freq = list(df_map[-50])
ls_mod = []
ls_beat = []
for k in freq:
e1 = eod[k]
zeit = np.asarray(e1[0])
ampl = np.asarray(e1[1])
ct = times[k]
for chirp in ct:
time_cut = zeit[(zeit > chirp-10) & (zeit < chirp+10)]
eods_cut = ampl[(zeit > chirp-10) & (zeit < chirp+10)]
beat_cut = ampl[(zeit > chirp-55) & (zeit < chirp-10)]
chirp_mod = np.std(eods_cut) #Std vom Bereich um den Chirp
ls_mod.append(chirp_mod)
ls_beat.extend(beat_cut)
beat_mod = np.std(ls_beat) #Std vom Bereich vor dem Chirp
plt.figure()
plt.scatter(np.arange(0,len(ls_mod),1), ls_mod)
plt.scatter(np.arange(0,len(ls_mod),1), np.ones(len(ls_mod))*beat_mod, color = 'violet')
plt.show()
#Chirps einer Phase zuordnen - zusammen plotten?
dct_phase = {}
chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
df_map = map_keys(chirp_spikes)
sort_df = sorted(df_map.keys())
num_bin = 12
phase_vec = np.arange(0, 1+1/num_bin, 1/num_bin)
for i in sort_df:
freq = list(df_map[i])
dct_phase[i] = []
for k in freq:
for phase in chirp_spikes[k]:
dct_phase[i].append(phase[1])
#for idx in np.arange(num_bin):
#if phase[1] > phase_vec[idx] and phase[1] < phase_vec[idx+1]:
print(dct_phase)