los
This commit is contained in:
parent
f3a6fbbc37
commit
00b568be28
@ -9,7 +9,7 @@ from IPython import embed
|
||||
|
||||
data_dir = "../data"
|
||||
dataset = "2018-11-09-ad-invivo-1"
|
||||
data = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1")
|
||||
#data = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1","2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1"," 2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1")
|
||||
|
||||
|
||||
|
||||
@ -56,7 +56,7 @@ axs[1,1].set_xlabel('Time [ms]')
|
||||
|
||||
#for i in df_map.keys():
|
||||
|
||||
freq = list(df_map['-50Hz'])
|
||||
freq = list(df_map[-50])
|
||||
ls_mod = []
|
||||
ls_beat = []
|
||||
for k in freq:
|
||||
@ -71,18 +71,35 @@ for k in freq:
|
||||
beat_cut = ampl[(zeit > chirp-55) & (zeit < chirp-10)]
|
||||
|
||||
chirp_mod = np.std(eods_cut) #Std vom Bereich um den Chirp
|
||||
ls_mod.append(chirp_mod) #in die richtige Reihenfolge bringen?
|
||||
#momentan nicht nach Chirp-Platz sortiert, sondern nacheinander
|
||||
ls_mod.append(chirp_mod)
|
||||
ls_beat.extend(beat_cut)
|
||||
|
||||
#erst beat_cuts auf die gleiche Länge bringen!
|
||||
ls_beat.append(beat_cut)
|
||||
|
||||
#beat_mod = np.std(ls_beat) #Std vom Bereich vor dem Chirp
|
||||
beat_mod = np.std(ls_beat) #Std vom Bereich vor dem Chirp
|
||||
plt.figure()
|
||||
plt.scatter(np.arange(0,len(ls_mod),1), ls_mod)
|
||||
plt.scatter(np.arange(0,len(ls_mod),1), np.ones(len(ls_mod))/2, color = 'violet')
|
||||
plt.scatter(np.arange(0,len(ls_mod),1), np.ones(len(ls_mod))*beat_mod, color = 'violet')
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
#Chirps einer Phase zuordnen - zusammen plotten?
|
||||
|
||||
dct_phase = {}
|
||||
chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
|
||||
df_map = map_keys(chirp_spikes)
|
||||
sort_df = sorted(df_map.keys())
|
||||
|
||||
num_bin = 12
|
||||
phase_vec = np.arange(0, 1+1/num_bin, 1/num_bin)
|
||||
|
||||
for i in sort_df:
|
||||
freq = list(df_map[i])
|
||||
dct_phase[i] = []
|
||||
for k in freq:
|
||||
for phase in chirp_spikes[k]:
|
||||
dct_phase[i].append(phase[1])
|
||||
#for idx in np.arange(num_bin):
|
||||
#if phase[1] > phase_vec[idx] and phase[1] < phase_vec[idx+1]:
|
||||
|
||||
print(dct_phase)
|
||||
|
||||
|
@ -7,7 +7,7 @@ from IPython import embed #Funktionen importieren
|
||||
|
||||
data_dir = "../data"
|
||||
dataset = "2018-11-09-aa-invivo-1"
|
||||
#data = ("2018-11-09-aa-invivo-1", "2018-11-09-ab-invivo-1", "2018-11-09-ac-invivo-1", "2018-11-09-ad-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ab-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-09-af-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ab-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-ae-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-aj-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1")
|
||||
#data = ("2018-11-09-aa-invivo-1", "2018-11-09-ab-invivo-1", "2018-11-09-ac-invivo-1", "2018-11-09-ad-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ab-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-09-af-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ab-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-ae-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-aj-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1"," 2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1")
|
||||
time,eod = read_baseline_eod(os.path.join(data_dir, dataset))
|
||||
zeit = np.asarray(time)
|
||||
|
||||
|
@ -8,8 +8,8 @@ from IPython import embed #Funktionen imposrtieren
|
||||
|
||||
|
||||
data_dir = "../data"
|
||||
dataset = "2018-11-09-ad-invivo-1"
|
||||
#data = ("2018-11-09-aa-invivo-1", "2018-11-09-ab-invivo-1", "2018-11-09-ac-invivo-1", "2018-11-09-ad-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ab-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-09-af-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ab-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-ae-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-aj-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1")
|
||||
dataset = "2018-11-13-ad-invivo-1"
|
||||
#data = ("2018-11-09-ad-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-09-af-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ab-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-ae-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-aj-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1"," 2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1")
|
||||
|
||||
|
||||
|
||||
@ -38,46 +38,46 @@ plt.show()
|
||||
|
||||
#Nyquist-Theorem Plot:
|
||||
|
||||
|
||||
chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
|
||||
df_map = map_keys(chirp_spikes)
|
||||
ls_rate = {}
|
||||
for i in df_map.keys():
|
||||
sort_df = sorted(df_map.keys())
|
||||
|
||||
plt.figure()
|
||||
dct_rate = {}
|
||||
for i in sort_df:
|
||||
freq = list(df_map[i])
|
||||
ls_rate[i] = []
|
||||
dct_rate[i] = []
|
||||
for k in freq:
|
||||
for phase in chirp_spikes[k]:
|
||||
spikes = chirp_spikes[k][phase]
|
||||
rate = len(spikes)/ 1.2
|
||||
ls_rate[i].append(rate)
|
||||
dct_rate[i].append(rate)
|
||||
|
||||
|
||||
plt.figure()
|
||||
sort_df = sorted(df_map.keys(),reverse = False)
|
||||
print(sort_df)
|
||||
for h in sort_df:
|
||||
plt.plot(np.arange(0,len(dct_rate[h]),1),dct_rate[h], label = h)
|
||||
|
||||
for i in sort_df:
|
||||
plt.plot(np.arange(0,len(ls_rate[i]),1),ls_rate[i], label = i)
|
||||
|
||||
plt.vlines(10, ymin = 200, ymax = 300)
|
||||
plt.vlines(30, ymin = 200, ymax = 300)
|
||||
plt.vlines(50, ymin = 200, ymax = 300)
|
||||
plt.vlines(70, ymin = 200, ymax = 300)
|
||||
plt.vlines(90, ymin = 200, ymax = 300)
|
||||
plt.vlines(110, ymin = 200, ymax = 300)
|
||||
plt.vlines(130, ymin = 200, ymax = 300)
|
||||
plt.vlines(150, ymin = 200, ymax = 300)
|
||||
#plt.vlines(10, ymin = 190, ymax = 310)
|
||||
plt.legend()
|
||||
plt.title('Firing rate of the cell for all trials, sorted by df')
|
||||
plt.xlabel('# of trials')
|
||||
plt.ylabel('Instant firing rate of the cell')
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
#mittlere Feuerrate einer Frequenz auf Frequenz
|
||||
|
||||
plt.figure()
|
||||
ls_mean = []
|
||||
for i in sort_df:
|
||||
mean = np.mean(ls_rate[i])
|
||||
for d in sort_df:
|
||||
mean = np.mean(dct_rate[d])
|
||||
ls_mean.append(mean)
|
||||
|
||||
plt.plot(np.arange(0,len(ls_mean),1),ls_mean)
|
||||
plt.title('Mean firing rate of a cell for a range of frequency differences')
|
||||
plt. xticks(np.arange(len(sort_df)), (sort_df))
|
||||
plt.xlabel('Range of frequency differences [Hz]')
|
||||
plt.ylabel('Mean firing rate of the cell')
|
||||
plt.show()
|
||||
|
||||
|
||||
|
@ -36,11 +36,10 @@ def smooth(data, window, dt):
|
||||
def map_keys(input):
|
||||
df_map = {}
|
||||
for k in input.keys():
|
||||
df = k[1]
|
||||
#ch = k[3]
|
||||
freq = k[1]
|
||||
df = int(freq.strip('Hz'))
|
||||
if df in df_map.keys():
|
||||
df_map[df].append(k)
|
||||
else:
|
||||
df_map[df] = [k]
|
||||
return df_map
|
||||
#print(ch)
|
||||
|
Loading…
Reference in New Issue
Block a user