from read_chirp_data import * from utility import * #import nix_helpers as nh import matplotlib.pyplot as plt import numpy as np from IPython import embed data_dir = "../data" dataset = "2018-11-09-ad-invivo-1" #data = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1","2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1"," 2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1") #for dataset in data: eod = read_chirp_eod(os.path.join(data_dir, dataset)) times = read_chirp_times(os.path.join(data_dir, dataset)) df_map = map_keys(eod) #die äußere Schleife geht für alle Keys durch und somit durch alle dfs #die innnere Schleife bildet die 16 Wiederholungen einer Frequenz ab for i in df_map.keys(): freq = list(df_map[i]) fig,axs = plt.subplots(2, 2, sharex = True, sharey = True) for idx, k in enumerate(freq): ct = times[k] e1 = eod[k] zeit = e1[0] eods = e1[1] if idx <= 3: axs[0, 0].plot(zeit, eods, color= 'blue', linewidth = 0.25) axs[0, 0].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22) elif 4<= idx <= 7: axs[0, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25) axs[0, 1].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22) elif 8<= idx <= 11: axs[1, 0].plot(zeit, eods, color= 'blue', linewidth = 0.25) axs[1, 0].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22) else: axs[1, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25) axs[1, 1].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22) fig.suptitle('EOD for chirps', fontsize = 16) axs[0,0].set_ylabel('Amplitude [mV]') axs[0,1].set_xlabel('Amplitude [mV]') axs[1,0].set_xlabel('Time [ms]') axs[1,1].set_xlabel('Time [ms]') #for i in df_map.keys(): freq = list(df_map[-50]) ls_mod = [] ls_beat = [] for k in freq: e1 = eod[k] zeit = np.asarray(e1[0]) ampl = np.asarray(e1[1]) ct = times[k] for chirp in ct: time_cut = zeit[(zeit > chirp-10) & (zeit < chirp+10)] eods_cut = ampl[(zeit > chirp-10) & (zeit < chirp+10)] beat_cut = ampl[(zeit > chirp-55) & (zeit < chirp-10)] chirp_mod = np.std(eods_cut) #Std vom Bereich um den Chirp ls_mod.append(chirp_mod) ls_beat.extend(beat_cut) beat_mod = np.std(ls_beat) #Std vom Bereich vor dem Chirp plt.figure() plt.scatter(np.arange(0,len(ls_mod),1), ls_mod) plt.scatter(np.arange(0,len(ls_mod),1), np.ones(len(ls_mod))*beat_mod, color = 'violet') plt.show() #Chirps einer Phase zuordnen - zusammen plotten? dct_phase = {} chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset)) df_map = map_keys(chirp_spikes) sort_df = sorted(df_map.keys()) num_bin = 12 phase_vec = np.arange(0, 1+1/num_bin, 1/num_bin) for i in sort_df: freq = list(df_map[i]) dct_phase[i] = [] for k in freq: for phase in chirp_spikes[k]: dct_phase[i].append(phase[1]) #for idx in np.arange(num_bin): #if phase[1] > phase_vec[idx] and phase[1] < phase_vec[idx+1]: print(dct_phase)