172 lines
5.8 KiB
Python
172 lines
5.8 KiB
Python
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from IPython import embed
|
|
from model_max import simulate, load_models
|
|
import matplotlib.gridspec as gridspec
|
|
from plot_eod_chirp import power_parameters
|
|
from scipy.ndimage import gaussian_filter
|
|
"""
|
|
Dependencies:
|
|
numpy
|
|
matplotlib
|
|
numba (optional, speeds simulation up: pre-compiles functions to machine code)
|
|
"""
|
|
|
|
|
|
def main():
|
|
# tiny example program:
|
|
|
|
example_cell_idx = 11
|
|
|
|
# load model parameter:
|
|
parameters = load_models("models.csv")
|
|
|
|
model_params = parameters[example_cell_idx]
|
|
cell = model_params.pop('cell')
|
|
eod_fr = model_params.pop('EODf')
|
|
print("Example with cell:", cell)
|
|
step = 20
|
|
eod_fe = np.arange(0,eod_fr*5,step)
|
|
# generate EOD-like stimulus with an amplitude step:
|
|
deltat = model_params["deltat"]
|
|
stimulus_length = 11.0 # in seconds
|
|
time = np.arange(0, stimulus_length, deltat)
|
|
time = np.arange(0, stimulus_length, deltat)
|
|
# baseline EOD with amplitude 1:
|
|
a_fr = 1 # amplitude fish reciever
|
|
a_fe = 0.2 # amplitude fish emitter
|
|
#results = [[]]*
|
|
results = [[]] * 3
|
|
counter = 0
|
|
for e in range(len(eod_fe)):
|
|
time_fish_r = time * 2 * np.pi * eod_fr
|
|
eod_fish_r = a_fr * np.sin(time_fish_r)
|
|
time_fish_e = time * 2 * np.pi * eod_fe[e]
|
|
eod_fish_e = a_fe * np.sin(time_fish_e)
|
|
stimulus = eod_fish_e+eod_fish_r
|
|
|
|
# integrate the model:
|
|
spikes = simulate(stimulus, **model_params)
|
|
spikes_new = spikes[spikes > 1]
|
|
sampling_rate = 1/deltat
|
|
counter +=1
|
|
if len(spikes_new)>0:
|
|
spikes_mat = np.zeros(int(spikes_new[-1] * sampling_rate) + 2)
|
|
spikes_idx = np.round((spikes_new) * sampling_rate)
|
|
for spike in spikes_idx:
|
|
spikes_mat[int(spike)] = 1
|
|
spikes_mat = spikes_mat*sampling_rate
|
|
window005 = 0.00005 * sampling_rate
|
|
window05 = 0.0005 * sampling_rate
|
|
window2 = 0.002 * sampling_rate
|
|
smoothened_spikes_mat005 = gaussian_filter(spikes_mat, sigma=window005)
|
|
smoothened_spikes_mat05 = gaussian_filter(spikes_mat, sigma=window05)
|
|
smoothened_spikes_mat2 = gaussian_filter(spikes_mat, sigma=window2)
|
|
nfft = 4096*2
|
|
array = [spikes_mat, smoothened_spikes_mat05,smoothened_spikes_mat2]
|
|
name = ['binary','05','2']
|
|
|
|
for i in range(len(array)):
|
|
results[i] = power_parameters(results[i], array[i], 1/deltat, nfft, name[i], eod_fr)
|
|
else:
|
|
print(counter)
|
|
embed()
|
|
ax = {}
|
|
for i in range(len(results)):
|
|
ax[i] = plt.subplot(2,3,i+1)
|
|
plt.plot((eod_fe -eod_fr)/(eod_fr)+1,results[i]['f'],color = 'red')
|
|
#plt.scatter((eod_fe - eod_fr) / (eod_fr) + 1, results[i]['f'],color = 'red')
|
|
ax[0].set_ylabel('[Hz]')
|
|
ax[i].set_ylim([0,eod_fr/2])
|
|
for i in range(len(results)):
|
|
ax[i+len(results)] = plt.subplot(2,3,i+len(results)+1)
|
|
plt.plot((eod_fe -eod_fr)/(eod_fr)+1,results[i]['max'],color = 'steelblue')
|
|
#plt.scatter((eod_fe - eod_fr) / (eod_fr) + 1, results[i]['max'],color = 'blue')
|
|
ax[len(results)].set_ylabel('Modulation')
|
|
ax[len(results)+i].set_xlabel('EOD multiples')
|
|
plt.subplots_adjust(wspace = 0.3)
|
|
plt.savefig('modell_single_cellmax.pdf')
|
|
plt.savefig('../highbeats_pdf/cell_simulations/modell_single_cell'+cell+'max.pdf')
|
|
plt.show()
|
|
embed()
|
|
# some analysis an dplotting:
|
|
#embed()
|
|
grid = gridspec.GridSpec(int(np.sqrt(len(parameters))), int(np.ceil(np.sqrt(len(parameters)))))
|
|
parameters = load_models("models.csv")
|
|
for i in range(4):
|
|
#for i in range(len(parameters)):
|
|
model_params = parameters[i]
|
|
print(cell)
|
|
cell = model_params.pop('cell')
|
|
EODf = model_params.pop('EODf')
|
|
|
|
|
|
# generate EOD-like stimulus
|
|
deltat = model_params["deltat"]
|
|
stimulus_length = 11.0 # in seconds
|
|
time = np.arange(0, stimulus_length, deltat)
|
|
# baseline EOD with amplitude 1:
|
|
stimulus = np.sin(2 * np.pi * EODf * time)
|
|
# das lasse ich eine sekunde integrieren dann weitere 10 sekunden integrieren und das nehmen
|
|
spikes = simulate(stimulus, **model_params)
|
|
|
|
# cut off first second of response
|
|
new_spikes = spikes[spikes >1]
|
|
|
|
freq,isis = calculate_isi_frequency(new_spikes, deltat)
|
|
|
|
#embed()
|
|
plt.subplot(grid[i])
|
|
plt.title('B:'+np.mean(freq))
|
|
plt.hist(isis, bins = 100, density = True)
|
|
plt.savefig('isi_model.pdf')
|
|
plt.savefig('../highbeats_pdf/isi_model.pdf')
|
|
plt.show()
|
|
|
|
freq_time = np.arange(spikes[0], spikes[-1], deltat)
|
|
|
|
fig, axs = plt.subplots(2, 1, sharex="col")
|
|
|
|
axs[0].plot(time, stimulus)
|
|
axs[0].set_title("Stimulus")
|
|
axs[0].set_ylabel("Amplitude in mV")
|
|
|
|
axs[1].plot(freq_time, freq)
|
|
axs[1].set_title("Model Frequency")
|
|
axs[1].set_ylabel("Frequency in Hz")
|
|
axs[1].set_xlabel("Time in s")
|
|
plt.show()
|
|
plt.close()
|
|
|
|
|
|
def calculate_isi_frequency(spikes, deltat):
|
|
"""
|
|
calculates inter-spike interval frequency
|
|
(wasn't tested a lot may give different length than time = np.arange(spikes[0], spikes[-1], deltat),
|
|
or raise an index error for some inputs)
|
|
|
|
:param spikes: spike time points
|
|
:param deltat: integration time step of the model
|
|
|
|
:return: the frequency trace:
|
|
starts at the time of first spike
|
|
ends at the time of the last spike.
|
|
"""
|
|
|
|
isis = np.diff(spikes)
|
|
freq_points = 1 / isis
|
|
freq = np.zeros(int((spikes[-1] - spikes[0]) / deltat))
|
|
|
|
current_idx = 0
|
|
for i, isi in enumerate(isis):
|
|
end_idx = int(current_idx + np.rint(isi / deltat))
|
|
freq[current_idx:end_idx] = freq_points[i]
|
|
current_idx = end_idx
|
|
|
|
return freq,isis
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|