highbeats_pdf/modell_single_cell_max.py
2020-12-01 12:00:50 +01:00

172 lines
5.8 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
from IPython import embed
from model_max import simulate, load_models
import matplotlib.gridspec as gridspec
from plot_eod_chirp import power_parameters
from scipy.ndimage import gaussian_filter
"""
Dependencies:
numpy
matplotlib
numba (optional, speeds simulation up: pre-compiles functions to machine code)
"""
def main():
# tiny example program:
example_cell_idx = 11
# load model parameter:
parameters = load_models("models.csv")
model_params = parameters[example_cell_idx]
cell = model_params.pop('cell')
eod_fr = model_params.pop('EODf')
print("Example with cell:", cell)
step = 20
eod_fe = np.arange(0,eod_fr*5,step)
# generate EOD-like stimulus with an amplitude step:
deltat = model_params["deltat"]
stimulus_length = 11.0 # in seconds
time = np.arange(0, stimulus_length, deltat)
time = np.arange(0, stimulus_length, deltat)
# baseline EOD with amplitude 1:
a_fr = 1 # amplitude fish reciever
a_fe = 0.2 # amplitude fish emitter
#results = [[]]*
results = [[]] * 3
counter = 0
for e in range(len(eod_fe)):
time_fish_r = time * 2 * np.pi * eod_fr
eod_fish_r = a_fr * np.sin(time_fish_r)
time_fish_e = time * 2 * np.pi * eod_fe[e]
eod_fish_e = a_fe * np.sin(time_fish_e)
stimulus = eod_fish_e+eod_fish_r
# integrate the model:
spikes = simulate(stimulus, **model_params)
spikes_new = spikes[spikes > 1]
sampling_rate = 1/deltat
counter +=1
if len(spikes_new)>0:
spikes_mat = np.zeros(int(spikes_new[-1] * sampling_rate) + 2)
spikes_idx = np.round((spikes_new) * sampling_rate)
for spike in spikes_idx:
spikes_mat[int(spike)] = 1
spikes_mat = spikes_mat*sampling_rate
window005 = 0.00005 * sampling_rate
window05 = 0.0005 * sampling_rate
window2 = 0.002 * sampling_rate
smoothened_spikes_mat005 = gaussian_filter(spikes_mat, sigma=window005)
smoothened_spikes_mat05 = gaussian_filter(spikes_mat, sigma=window05)
smoothened_spikes_mat2 = gaussian_filter(spikes_mat, sigma=window2)
nfft = 4096*2
array = [spikes_mat, smoothened_spikes_mat05,smoothened_spikes_mat2]
name = ['binary','05','2']
for i in range(len(array)):
results[i] = power_parameters(results[i], array[i], 1/deltat, nfft, name[i], eod_fr)
else:
print(counter)
embed()
ax = {}
for i in range(len(results)):
ax[i] = plt.subplot(2,3,i+1)
plt.plot((eod_fe -eod_fr)/(eod_fr)+1,results[i]['f'],color = 'red')
#plt.scatter((eod_fe - eod_fr) / (eod_fr) + 1, results[i]['f'],color = 'red')
ax[0].set_ylabel('[Hz]')
ax[i].set_ylim([0,eod_fr/2])
for i in range(len(results)):
ax[i+len(results)] = plt.subplot(2,3,i+len(results)+1)
plt.plot((eod_fe -eod_fr)/(eod_fr)+1,results[i]['max'],color = 'steelblue')
#plt.scatter((eod_fe - eod_fr) / (eod_fr) + 1, results[i]['max'],color = 'blue')
ax[len(results)].set_ylabel('Modulation')
ax[len(results)+i].set_xlabel('EOD multiples')
plt.subplots_adjust(wspace = 0.3)
plt.savefig('modell_single_cellmax.pdf')
plt.savefig('../highbeats_pdf/cell_simulations/modell_single_cell'+cell+'max.pdf')
plt.show()
embed()
# some analysis an dplotting:
#embed()
grid = gridspec.GridSpec(int(np.sqrt(len(parameters))), int(np.ceil(np.sqrt(len(parameters)))))
parameters = load_models("models.csv")
for i in range(4):
#for i in range(len(parameters)):
model_params = parameters[i]
print(cell)
cell = model_params.pop('cell')
EODf = model_params.pop('EODf')
# generate EOD-like stimulus
deltat = model_params["deltat"]
stimulus_length = 11.0 # in seconds
time = np.arange(0, stimulus_length, deltat)
# baseline EOD with amplitude 1:
stimulus = np.sin(2 * np.pi * EODf * time)
# das lasse ich eine sekunde integrieren dann weitere 10 sekunden integrieren und das nehmen
spikes = simulate(stimulus, **model_params)
# cut off first second of response
new_spikes = spikes[spikes >1]
freq,isis = calculate_isi_frequency(new_spikes, deltat)
#embed()
plt.subplot(grid[i])
plt.title('B:'+np.mean(freq))
plt.hist(isis, bins = 100, density = True)
plt.savefig('isi_model.pdf')
plt.savefig('../highbeats_pdf/isi_model.pdf')
plt.show()
freq_time = np.arange(spikes[0], spikes[-1], deltat)
fig, axs = plt.subplots(2, 1, sharex="col")
axs[0].plot(time, stimulus)
axs[0].set_title("Stimulus")
axs[0].set_ylabel("Amplitude in mV")
axs[1].plot(freq_time, freq)
axs[1].set_title("Model Frequency")
axs[1].set_ylabel("Frequency in Hz")
axs[1].set_xlabel("Time in s")
plt.show()
plt.close()
def calculate_isi_frequency(spikes, deltat):
"""
calculates inter-spike interval frequency
(wasn't tested a lot may give different length than time = np.arange(spikes[0], spikes[-1], deltat),
or raise an index error for some inputs)
:param spikes: spike time points
:param deltat: integration time step of the model
:return: the frequency trace:
starts at the time of first spike
ends at the time of the last spike.
"""
isis = np.diff(spikes)
freq_points = 1 / isis
freq = np.zeros(int((spikes[-1] - spikes[0]) / deltat))
current_idx = 0
for i, isi in enumerate(isis):
end_idx = int(current_idx + np.rint(isi / deltat))
freq[current_idx:end_idx] = freq_points[i]
current_idx = end_idx
return freq,isis
if __name__ == '__main__':
main()