import numpy as np import matplotlib.pyplot as plt from IPython import embed from model_max import simulate, load_models import matplotlib.gridspec as gridspec from plot_eod_chirp import power_parameters from scipy.ndimage import gaussian_filter """ Dependencies: numpy matplotlib numba (optional, speeds simulation up: pre-compiles functions to machine code) """ def main(): # tiny example program: example_cell_idx = 11 # load model parameter: parameters = load_models("models.csv") model_params = parameters[example_cell_idx] cell = model_params.pop('cell') eod_fr = model_params.pop('EODf') print("Example with cell:", cell) step = 20 eod_fe = np.arange(0,eod_fr*5,step) # generate EOD-like stimulus with an amplitude step: deltat = model_params["deltat"] stimulus_length = 11.0 # in seconds time = np.arange(0, stimulus_length, deltat) time = np.arange(0, stimulus_length, deltat) # baseline EOD with amplitude 1: a_fr = 1 # amplitude fish reciever a_fe = 0.2 # amplitude fish emitter #results = [[]]* results = [[]] * 3 counter = 0 for e in range(len(eod_fe)): time_fish_r = time * 2 * np.pi * eod_fr eod_fish_r = a_fr * np.sin(time_fish_r) time_fish_e = time * 2 * np.pi * eod_fe[e] eod_fish_e = a_fe * np.sin(time_fish_e) stimulus = eod_fish_e+eod_fish_r # integrate the model: spikes = simulate(stimulus, **model_params) spikes_new = spikes[spikes > 1] sampling_rate = 1/deltat counter +=1 if len(spikes_new)>0: spikes_mat = np.zeros(int(spikes_new[-1] * sampling_rate) + 2) spikes_idx = np.round((spikes_new) * sampling_rate) for spike in spikes_idx: spikes_mat[int(spike)] = 1 spikes_mat = spikes_mat*sampling_rate window005 = 0.00005 * sampling_rate window05 = 0.0005 * sampling_rate window2 = 0.002 * sampling_rate smoothened_spikes_mat005 = gaussian_filter(spikes_mat, sigma=window005) smoothened_spikes_mat05 = gaussian_filter(spikes_mat, sigma=window05) smoothened_spikes_mat2 = gaussian_filter(spikes_mat, sigma=window2) nfft = 4096*2 array = [spikes_mat, smoothened_spikes_mat05,smoothened_spikes_mat2] name = ['binary','05','2'] for i in range(len(array)): results[i] = power_parameters(results[i], array[i], 1/deltat, nfft, name[i], eod_fr) else: print(counter) embed() ax = {} for i in range(len(results)): ax[i] = plt.subplot(2,3,i+1) plt.plot((eod_fe -eod_fr)/(eod_fr)+1,results[i]['f'],color = 'red') #plt.scatter((eod_fe - eod_fr) / (eod_fr) + 1, results[i]['f'],color = 'red') ax[0].set_ylabel('[Hz]') ax[i].set_ylim([0,eod_fr/2]) for i in range(len(results)): ax[i+len(results)] = plt.subplot(2,3,i+len(results)+1) plt.plot((eod_fe -eod_fr)/(eod_fr)+1,results[i]['max'],color = 'steelblue') #plt.scatter((eod_fe - eod_fr) / (eod_fr) + 1, results[i]['max'],color = 'blue') ax[len(results)].set_ylabel('Modulation') ax[len(results)+i].set_xlabel('EOD multiples') plt.subplots_adjust(wspace = 0.3) plt.savefig('modell_single_cellmax.pdf') plt.savefig('../highbeats_pdf/cell_simulations/modell_single_cell'+cell+'max.pdf') plt.show() embed() # some analysis an dplotting: #embed() grid = gridspec.GridSpec(int(np.sqrt(len(parameters))), int(np.ceil(np.sqrt(len(parameters))))) parameters = load_models("models.csv") for i in range(4): #for i in range(len(parameters)): model_params = parameters[i] print(cell) cell = model_params.pop('cell') EODf = model_params.pop('EODf') # generate EOD-like stimulus deltat = model_params["deltat"] stimulus_length = 11.0 # in seconds time = np.arange(0, stimulus_length, deltat) # baseline EOD with amplitude 1: stimulus = np.sin(2 * np.pi * EODf * time) # das lasse ich eine sekunde integrieren dann weitere 10 sekunden integrieren und das nehmen spikes = simulate(stimulus, **model_params) # cut off first second of response new_spikes = spikes[spikes >1] freq,isis = calculate_isi_frequency(new_spikes, deltat) #embed() plt.subplot(grid[i]) plt.title('B:'+np.mean(freq)) plt.hist(isis, bins = 100, density = True) plt.savefig('isi_model.pdf') plt.savefig('../highbeats_pdf/isi_model.pdf') plt.show() freq_time = np.arange(spikes[0], spikes[-1], deltat) fig, axs = plt.subplots(2, 1, sharex="col") axs[0].plot(time, stimulus) axs[0].set_title("Stimulus") axs[0].set_ylabel("Amplitude in mV") axs[1].plot(freq_time, freq) axs[1].set_title("Model Frequency") axs[1].set_ylabel("Frequency in Hz") axs[1].set_xlabel("Time in s") plt.show() plt.close() def calculate_isi_frequency(spikes, deltat): """ calculates inter-spike interval frequency (wasn't tested a lot may give different length than time = np.arange(spikes[0], spikes[-1], deltat), or raise an index error for some inputs) :param spikes: spike time points :param deltat: integration time step of the model :return: the frequency trace: starts at the time of first spike ends at the time of the last spike. """ isis = np.diff(spikes) freq_points = 1 / isis freq = np.zeros(int((spikes[-1] - spikes[0]) / deltat)) current_idx = 0 for i, isi in enumerate(isis): end_idx = int(current_idx + np.rint(isi / deltat)) freq[current_idx:end_idx] = freq_points[i] current_idx = end_idx return freq,isis if __name__ == '__main__': main()