98 lines
2.7 KiB
Python
98 lines
2.7 KiB
Python
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import pylab
|
|
from IPython import embed
|
|
from scipy.optimize import curve_fit
|
|
from jar_functions import gain_curve_fit
|
|
from jar_functions import avgNestedLists
|
|
|
|
|
|
identifier_uniform = ['2018lepto1',
|
|
# '2018lepto4',
|
|
# '2018lepto5',
|
|
#'2018lepto76',
|
|
'2018lepto98',
|
|
# '2019lepto03',
|
|
'2019lepto24',
|
|
#'2019lepto27',
|
|
# '2019lepto30',
|
|
'2020lepto04',
|
|
# '2020lepto06',
|
|
# '2020lepto16',
|
|
'2020lepto19',
|
|
# '2020lepto20'
|
|
]
|
|
identifier = ['2018lepto1',
|
|
'2018lepto4',
|
|
'2018lepto5',
|
|
'2018lepto76',
|
|
'2018lepto98',
|
|
'2019lepto03',
|
|
'2019lepto24',
|
|
'2019lepto27',
|
|
'2019lepto30',
|
|
'2020lepto04',
|
|
'2020lepto06',
|
|
'2020lepto16',
|
|
'2020lepto19',
|
|
'2020lepto20'
|
|
]
|
|
|
|
tau = []
|
|
f_c = []
|
|
for ID in identifier:
|
|
print(ID)
|
|
amf = np.load('amf_%s.npy' %ID)
|
|
gain = np.load('gain_%s.npy' %ID)
|
|
|
|
sinv, sinc = curve_fit(gain_curve_fit, amf, gain)
|
|
#print('tau:', sinv[0])
|
|
tau.append(sinv[0])
|
|
f_cutoff = abs(1 / (2*np.pi*sinv[0]))
|
|
print('f_cutoff:', f_cutoff)
|
|
f_c.append(f_cutoff)
|
|
|
|
tau_uniform = []
|
|
f_c_uniform = []
|
|
for ID in identifier_uniform:
|
|
#print(ID)
|
|
amf = np.load('amf_%s.npy' %ID)
|
|
gain = np.load('gain_%s.npy' %ID)
|
|
|
|
sinv, sinc = curve_fit(gain_curve_fit, amf, gain)
|
|
#print('tau:', sinv[0])
|
|
tau_uniform.append(sinv[0])
|
|
f_cutoff = abs(1 / (2*np.pi*sinv[0]))
|
|
#print('f_cutoff:', f_cutoff)
|
|
f_c_uniform.append(f_cutoff)
|
|
amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1]
|
|
|
|
all = []
|
|
new_all = []
|
|
for ident in identifier:
|
|
data = np.load('gain_%s.npy' %ident)
|
|
all.append(data)
|
|
for ident in identifier_uniform:
|
|
data = np.load('gain_%s.npy' % ident)
|
|
new_all.append(data)
|
|
|
|
av = avgNestedLists(all)
|
|
new_av = avgNestedLists(new_all)
|
|
lim = 0.001
|
|
fig = plt.figure()
|
|
ax = fig.add_subplot(111)
|
|
ax.plot(amf, av, 'o', color = 'orange', label = 'normal')
|
|
ax.plot(amf, new_av, 'o', color = 'blue', label = 'uniformed')
|
|
ax.set_xscale('log')
|
|
ax.set_yscale('log')
|
|
ax.set_title('gaincurve_average_allfish')
|
|
ax.set_ylabel('gain [Hz/(mV/cm)]')
|
|
ax.set_xlabel('envelope_frequency [Hz]')
|
|
ax.set_ylim(0.0008, )
|
|
ax.plot(f_c, np.full((len(identifier)), 0.0015), 'o', color = 'orange', label = 'all cutoff frequencies')
|
|
ax.plot(f_c_uniform, np.full((len(identifier_uniform)), 0.001), 'o', color = 'blue', label = 'uniformed cutoff frequencies')
|
|
ax.legend()
|
|
|
|
plt.show()
|
|
embed()
|