import matplotlib.pyplot as plt import numpy as np import pylab from IPython import embed from scipy.optimize import curve_fit from jar_functions import gain_curve_fit from jar_functions import avgNestedLists identifier_uniform = ['2018lepto1', # '2018lepto4', # '2018lepto5', #'2018lepto76', '2018lepto98', # '2019lepto03', '2019lepto24', #'2019lepto27', # '2019lepto30', '2020lepto04', # '2020lepto06', # '2020lepto16', '2020lepto19', # '2020lepto20' ] identifier = ['2018lepto1', '2018lepto4', '2018lepto5', '2018lepto76', '2018lepto98', '2019lepto03', '2019lepto24', '2019lepto27', '2019lepto30', '2020lepto04', '2020lepto06', '2020lepto16', '2020lepto19', '2020lepto20' ] tau = [] f_c = [] for ID in identifier: print(ID) amf = np.load('amf_%s.npy' %ID) gain = np.load('gain_%s.npy' %ID) sinv, sinc = curve_fit(gain_curve_fit, amf, gain) #print('tau:', sinv[0]) tau.append(sinv[0]) f_cutoff = abs(1 / (2*np.pi*sinv[0])) print('f_cutoff:', f_cutoff) f_c.append(f_cutoff) tau_uniform = [] f_c_uniform = [] for ID in identifier_uniform: #print(ID) amf = np.load('amf_%s.npy' %ID) gain = np.load('gain_%s.npy' %ID) sinv, sinc = curve_fit(gain_curve_fit, amf, gain) #print('tau:', sinv[0]) tau_uniform.append(sinv[0]) f_cutoff = abs(1 / (2*np.pi*sinv[0])) #print('f_cutoff:', f_cutoff) f_c_uniform.append(f_cutoff) amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1] all = [] new_all = [] for ident in identifier: data = np.load('gain_%s.npy' %ident) all.append(data) for ident in identifier_uniform: data = np.load('gain_%s.npy' % ident) new_all.append(data) av = avgNestedLists(all) new_av = avgNestedLists(new_all) lim = 0.001 fig = plt.figure() ax = fig.add_subplot(111) ax.plot(amf, av, 'o', color = 'orange', label = 'normal') ax.plot(amf, new_av, 'o', color = 'blue', label = 'uniformed') ax.set_xscale('log') ax.set_yscale('log') ax.set_title('gaincurve_average_allfish') ax.set_ylabel('gain [Hz/(mV/cm)]') ax.set_xlabel('envelope_frequency [Hz]') ax.set_ylim(0.0008, ) ax.plot(f_c, np.full((len(identifier)), 0.0015), 'o', color = 'orange', label = 'all cutoff frequencies') ax.plot(f_c_uniform, np.full((len(identifier_uniform)), 0.001), 'o', color = 'blue', label = 'uniformed cutoff frequencies') ax.legend() plt.show() embed()