116 lines
3.7 KiB
Python
116 lines
3.7 KiB
Python
import matplotlib.pyplot as plt
|
|
import matplotlib as cm
|
|
from matplotlib.colors import ListedColormap, LinearSegmentedColormap
|
|
import os
|
|
import glob
|
|
import IPython
|
|
import numpy as np
|
|
from IPython import embed
|
|
from scipy.optimize import curve_fit
|
|
from jar_functions import parse_dataset
|
|
from jar_functions import parse_infodataset
|
|
from jar_functions import mean_traces
|
|
from jar_functions import mean_noise_cut
|
|
from jar_functions import norm_function
|
|
from jar_functions import step_response
|
|
from jar_functions import sort_values
|
|
from jar_functions import average
|
|
|
|
base_path = 'D:\\jar_project\\JAR\\step\\step_2018lepto98'
|
|
|
|
#nicht: -5Hz delta f, 19-aa, 22-ae, 22-ad (?)
|
|
datasets = [#'2020-06-19-aa', #-5Hz delta f, horrible fit
|
|
#'2020-06-19-ab', #-5Hz delta f, bad fit
|
|
#'2020-06-22-aa', #-5Hz delta f, bad fit
|
|
#'2020-06-22-ab', #-5Hz delta f, bad fit
|
|
#'2020-06-22-ac', #-15Hz delta f, good fit
|
|
#'2020-06-22-ad', #-15Hz delta f, horrible fit
|
|
#'2020-06-22-ae', #-15Hz delta f, horrible fit
|
|
#'2020-06-22-af', #-15Hz delta f, good fit
|
|
'2020-07-13-ad',
|
|
'2020-07-13-ae',
|
|
'2020-07-13-af',
|
|
'2020-07-13-ag',
|
|
'2020-07-13-ah',
|
|
'2020-07-13-ai',
|
|
'2020-07-13-aj',
|
|
#'2020-07-13-ak',
|
|
#'2020-07-13-al',
|
|
'2020-07-13-am',
|
|
#'2020-07-13-an',
|
|
#'2020-07-13-ao'
|
|
]
|
|
|
|
#dat = glob.glob('D:\\jar_project\\JAR\\2020*\\beats-eod.dat')
|
|
#infodat = glob.glob('D:\\jar_project\\JAR\\2020*\\info.dat')
|
|
|
|
time_all = []
|
|
freq_all = []
|
|
|
|
ID = []
|
|
col = ['dimgrey', 'grey', 'darkgrey', 'silver', 'lightgrey', 'gainsboro', 'whitesmoke']
|
|
labels = zip(ID, datasets)
|
|
|
|
for infodataset in datasets:
|
|
infodataset = os.path.join(base_path, infodataset, 'info.dat')
|
|
i = parse_infodataset(infodataset)
|
|
identifier = i[0]
|
|
ID.append(identifier)
|
|
|
|
|
|
for idx, dataset in enumerate(datasets):
|
|
dataset = os.path.join(base_path, dataset, 'beats-eod.dat')
|
|
#input of the function
|
|
frequency, time, amplitude, eodf, deltaf, stimulusf, duration, pause = parse_dataset(dataset)
|
|
dm = np.mean(duration)
|
|
pm = np.mean(pause)
|
|
timespan = dm + pm
|
|
start = np.mean([t[0] for t in time])
|
|
stop = np.mean([t[-1] for t in time])
|
|
|
|
norm = norm_function(frequency, time, onset_point=dm - dm, offset_point=dm) # dm-dm funktioniert nur wenn onset = 0 sec
|
|
|
|
mf, tnew = mean_traces(start, stop, timespan, norm, time) # maybe fixed timespan/sampling rate
|
|
|
|
cf, ct = mean_noise_cut(mf, n=1250)
|
|
|
|
cf_arr = np.array(cf)
|
|
ct_arr = np.array(ct)
|
|
|
|
freq_all.append(cf_arr)
|
|
time_all.append(ct_arr)
|
|
|
|
plt.plot(ct_arr, cf_arr, label='fish=%s' % datasets[idx]) #, color = col[idx]
|
|
|
|
sv, sc = curve_fit(step_response, ct_arr[ct_arr < dm], cf_arr[ct_arr < dm], [1.0, 1.0, 5.0, 50.0], bounds=(0.0, np.inf)) # step_values and step_cov
|
|
|
|
# sorted a and tau
|
|
values = sort_values(sv)
|
|
|
|
# fit for each trace
|
|
#plt.plot(ct_arr[ct_arr < dm], step_response(ct_arr[ct_arr < dm], *sv), label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values))
|
|
plt.plot(ft, step_response(ft, *sv), color='orange', label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values))
|
|
|
|
print('fish: a1, a2, tau1, tau2', values)
|
|
|
|
|
|
# average over all fish
|
|
mf_all, tnew_all, values_all = average(freq_all, time_all, start, stop, timespan, dm)
|
|
|
|
|
|
#const_line = plt.axhline(y = 0.632)
|
|
stimulus_duration = plt.hlines(y = -0.25, xmin = 0, xmax = 100, color = 'r', label = 'stimulus_duration')
|
|
base_line = plt.axhline(y = 0, color = 'black', ls = 'dotted', linewidth = '1')
|
|
|
|
plt.xlim([-10,220])
|
|
plt.xlabel('time [s]')
|
|
plt.ylabel('rel. JAR magnitude')
|
|
plt.title('relative JAR')
|
|
plt.savefig('relative JAR')
|
|
plt.legend(loc = 'lower right')
|
|
plt.show()
|
|
embed()
|
|
|
|
|
|
# natalie fragen ob sie bei verschiedenen Amplituden messen kann (siehe tim)
|