import matplotlib.pyplot as plt import matplotlib as cm from matplotlib.colors import ListedColormap, LinearSegmentedColormap import os import glob import IPython import numpy as np from IPython import embed from scipy.optimize import curve_fit from jar_functions import parse_dataset from jar_functions import parse_infodataset from jar_functions import mean_traces from jar_functions import mean_noise_cut from jar_functions import norm_function from jar_functions import step_response from jar_functions import sort_values from jar_functions import average base_path = 'D:\\jar_project\\JAR\\step\\step_2018lepto98' #nicht: -5Hz delta f, 19-aa, 22-ae, 22-ad (?) datasets = [#'2020-06-19-aa', #-5Hz delta f, horrible fit #'2020-06-19-ab', #-5Hz delta f, bad fit #'2020-06-22-aa', #-5Hz delta f, bad fit #'2020-06-22-ab', #-5Hz delta f, bad fit #'2020-06-22-ac', #-15Hz delta f, good fit #'2020-06-22-ad', #-15Hz delta f, horrible fit #'2020-06-22-ae', #-15Hz delta f, horrible fit #'2020-06-22-af', #-15Hz delta f, good fit '2020-07-13-ad', '2020-07-13-ae', '2020-07-13-af', '2020-07-13-ag', '2020-07-13-ah', '2020-07-13-ai', '2020-07-13-aj', #'2020-07-13-ak', #'2020-07-13-al', '2020-07-13-am', #'2020-07-13-an', #'2020-07-13-ao' ] #dat = glob.glob('D:\\jar_project\\JAR\\2020*\\beats-eod.dat') #infodat = glob.glob('D:\\jar_project\\JAR\\2020*\\info.dat') time_all = [] freq_all = [] ID = [] col = ['dimgrey', 'grey', 'darkgrey', 'silver', 'lightgrey', 'gainsboro', 'whitesmoke'] labels = zip(ID, datasets) for infodataset in datasets: infodataset = os.path.join(base_path, infodataset, 'info.dat') i = parse_infodataset(infodataset) identifier = i[0] ID.append(identifier) for idx, dataset in enumerate(datasets): dataset = os.path.join(base_path, dataset, 'beats-eod.dat') #input of the function frequency, time, amplitude, eodf, deltaf, stimulusf, duration, pause = parse_dataset(dataset) dm = np.mean(duration) pm = np.mean(pause) timespan = dm + pm start = np.mean([t[0] for t in time]) stop = np.mean([t[-1] for t in time]) norm = norm_function(frequency, time, onset_point=dm - dm, offset_point=dm) # dm-dm funktioniert nur wenn onset = 0 sec mf, tnew = mean_traces(start, stop, timespan, norm, time) # maybe fixed timespan/sampling rate cf, ct = mean_noise_cut(mf, n=1250) cf_arr = np.array(cf) ct_arr = np.array(ct) freq_all.append(cf_arr) time_all.append(ct_arr) plt.plot(ct_arr, cf_arr, label='fish=%s' % datasets[idx]) #, color = col[idx] sv, sc = curve_fit(step_response, ct_arr[ct_arr < dm], cf_arr[ct_arr < dm], [1.0, 1.0, 5.0, 50.0], bounds=(0.0, np.inf)) # step_values and step_cov # sorted a and tau values = sort_values(sv) # fit for each trace #plt.plot(ct_arr[ct_arr < dm], step_response(ct_arr[ct_arr < dm], *sv), label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values)) plt.plot(ft, step_response(ft, *sv), color='orange', label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values)) print('fish: a1, a2, tau1, tau2', values) # average over all fish mf_all, tnew_all, values_all = average(freq_all, time_all, start, stop, timespan, dm) #const_line = plt.axhline(y = 0.632) stimulus_duration = plt.hlines(y = -0.25, xmin = 0, xmax = 100, color = 'r', label = 'stimulus_duration') base_line = plt.axhline(y = 0, color = 'black', ls = 'dotted', linewidth = '1') plt.xlim([-10,220]) plt.xlabel('time [s]') plt.ylabel('rel. JAR magnitude') plt.title('relative JAR') plt.savefig('relative JAR') plt.legend(loc = 'lower right') plt.show() embed() # natalie fragen ob sie bei verschiedenen Amplituden messen kann (siehe tim)