49 lines
1.3 KiB
Python
49 lines
1.3 KiB
Python
from scipy import signal
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import pylab
|
|
from IPython import embed
|
|
from scipy.optimize import curve_fit
|
|
from jar_functions import gain_curve_fit
|
|
|
|
identifier = ['2018lepto1',
|
|
'2018lepto4',
|
|
'2018lepto5',
|
|
'2018lepto76',
|
|
'2018lepto98',
|
|
'2019lepto03',
|
|
'2019lepto24',
|
|
'2019lepto27',
|
|
'2019lepto30',
|
|
'2020lepto04',
|
|
'2020lepto06',
|
|
'2020lepto16',
|
|
'2020lepto19',
|
|
'2020lepto20'
|
|
]
|
|
tau = []
|
|
f_c = []
|
|
for ID in identifier:
|
|
print(ID)
|
|
amf = np.load('amf_%s.npy' %ID)
|
|
gain = np.load('gain_%s.npy' %ID)
|
|
|
|
sinv, sinc = curve_fit(gain_curve_fit, amf, gain)
|
|
print('tau:', sinv[0])
|
|
tau.append(sinv[0])
|
|
f_cutoff = 1 / (2*np.pi*sinv[0])
|
|
print('f_cutoff:', f_cutoff)
|
|
f_c.append(f_cutoff)
|
|
|
|
fig = plt.figure()
|
|
ax = fig.add_subplot(111)
|
|
ax.plot(amf, gain, 'o')
|
|
amff = np.logspace(-3, 0, 200)
|
|
ax.plot(amff, gain_curve_fit(amff, *sinv))
|
|
ax.set_yscale('log')
|
|
ax.set_xscale('log')
|
|
plt.show()
|
|
|
|
#welche zeitkonstante ist das? was ist mit der zweiten? --> eher zweite zeitkonstante obwohl werte so klein?
|
|
|