from scipy import signal import matplotlib.pyplot as plt import numpy as np import pylab from IPython import embed from scipy.optimize import curve_fit from jar_functions import gain_curve_fit identifier = ['2018lepto1', '2018lepto4', '2018lepto5', '2018lepto76', '2018lepto98', '2019lepto03', '2019lepto24', '2019lepto27', '2019lepto30', '2020lepto04', '2020lepto06', '2020lepto16', '2020lepto19', '2020lepto20' ] tau = [] f_c = [] for ID in identifier: print(ID) amf = np.load('amf_%s.npy' %ID) gain = np.load('gain_%s.npy' %ID) sinv, sinc = curve_fit(gain_curve_fit, amf, gain) print('tau:', sinv[0]) tau.append(sinv[0]) f_cutoff = 1 / (2*np.pi*sinv[0]) print('f_cutoff:', f_cutoff) f_c.append(f_cutoff) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(amf, gain, 'o') amff = np.logspace(-3, 0, 200) ax.plot(amff, gain_curve_fit(amff, *sinv)) ax.set_yscale('log') ax.set_xscale('log') plt.show() #welche zeitkonstante ist das? was ist mit der zweiten? --> eher zweite zeitkonstante obwohl werte so klein?