jar_project/gain_fit.py
2020-09-08 14:49:58 +02:00

38 lines
1002 B
Python

from scipy import signal
import matplotlib.pyplot as plt
import numpy as np
import pylab
from IPython import embed
from scipy.optimize import curve_fit
from jar_functions import gain_curve_fit
identifier = ['2018lepto1',
'2018lepto4',
'2018lepto5',
'2018lepto76',
'2018lepto98',
'2019lepto03',
'2019lepto24',
'2019lepto27',
'2019lepto30',
'2020lepto04',
'2020lepto06',
'2020lepto16',
'2020lepto19',
'2020lepto20'
]
for ID in identifier:
amf = np.load('amf_%s.npy' %ID)
gain = np.load('gain_%s.npy' %ID)
rms = np.load('rms_%s.npy' %ID)
thresh = np.load('thresh_%s.npy' % ID)
idx_arr = (rms < thresh) | (rms < np.mean(rms))
embed()
sinv, sinc = curve_fit(gain_curve_fit, amf[idx_arr], gain[idx_arr])
print(sinv[0])
f_cutoff = 1 / (2*np.pi*sinv[0])
print(f_cutoff)