38 lines
1002 B
Python
38 lines
1002 B
Python
from scipy import signal
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import pylab
|
|
from IPython import embed
|
|
from scipy.optimize import curve_fit
|
|
from jar_functions import gain_curve_fit
|
|
|
|
identifier = ['2018lepto1',
|
|
'2018lepto4',
|
|
'2018lepto5',
|
|
'2018lepto76',
|
|
'2018lepto98',
|
|
'2019lepto03',
|
|
'2019lepto24',
|
|
'2019lepto27',
|
|
'2019lepto30',
|
|
'2020lepto04',
|
|
'2020lepto06',
|
|
'2020lepto16',
|
|
'2020lepto19',
|
|
'2020lepto20'
|
|
]
|
|
|
|
for ID in identifier:
|
|
amf = np.load('amf_%s.npy' %ID)
|
|
gain = np.load('gain_%s.npy' %ID)
|
|
rms = np.load('rms_%s.npy' %ID)
|
|
thresh = np.load('thresh_%s.npy' % ID)
|
|
|
|
idx_arr = (rms < thresh) | (rms < np.mean(rms))
|
|
|
|
embed()
|
|
sinv, sinc = curve_fit(gain_curve_fit, amf[idx_arr], gain[idx_arr])
|
|
print(sinv[0])
|
|
f_cutoff = 1 / (2*np.pi*sinv[0])
|
|
print(f_cutoff)
|