from scipy import signal import matplotlib.pyplot as plt import numpy as np import pylab from IPython import embed from scipy.optimize import curve_fit from jar_functions import gain_curve_fit identifier = ['2018lepto1', '2018lepto4', '2018lepto5', '2018lepto76', '2018lepto98', '2019lepto03', '2019lepto24', '2019lepto27', '2019lepto30', '2020lepto04', '2020lepto06', '2020lepto16', '2020lepto19', '2020lepto20' ] for ID in identifier: amf = np.load('amf_%s.npy' %ID) gain = np.load('gain_%s.npy' %ID) rms = np.load('rms_%s.npy' %ID) thresh = np.load('thresh_%s.npy' % ID) idx_arr = (rms < thresh) | (rms < np.mean(rms)) embed() sinv, sinc = curve_fit(gain_curve_fit, amf[idx_arr], gain[idx_arr]) print(sinv[0]) f_cutoff = 1 / (2*np.pi*sinv[0]) print(f_cutoff)